61 research outputs found

    Preliminary Experience With 3-Tesla MRI and Cushing\u27s Disease

    Get PDF
    Because radiographic visualization of a pituitary microadenoma is frequently difficult, we hypothesized that microadenomas associated with Cushing\u27s disease may be better resolved and localized via acquisition with 3-Tesla (3T) compared with standard 1.5-Tesla (1.5T) magnetic resonance imaging (MRI). Five patients (four females, one male; age range, 14 to 50 years old) with endocrine and clinical confirmation of Cushing\u27s disease underwent 1.5T and 3T MRI and corticotropin-releasing hormone stimulation/inferior petrosal sinus sampling (IPSS) as part of their preoperative evaluation. All patients underwent a transnasal trans-sphenoidal pituitary adenomectomy. In two cases, tumor could not be localized on either 1.5T or 3T MRI on the initial radiologist\u27s review. In two other cases, the 1.5T images delineated the tumor location, but it was more clearly defined on 3T MRI. In a fifth case, the 1.5T MRI showed a probable right-sided adenoma. However, on both 3T MRI and at surgical exploration the tumor was localized on the left side. Therefore, in three of five cases, 3T MRI either more clearly defined tumors seen on 1.5T MRI or predicted the location of tumor contrary to the 1.5T images. IPSS identified the correct side of the tumor in two patients, an incorrect location in two patients, and was indeterminate in one patient. In certain cases 3T MRI is a new tool that may ameliorate imaging difficulties associated with adrenocorticotrophic hormone-secreting pituitary adenomas. Its role in the diagnostic evaluation of Cushing\u27s disease will be better defined with further experience. Copyright © 2007 by Thieme Medical Publishers, Inc

    Long-term outcome data from 121 patients treated with Gamma Knife stereotactic radiosurgery as salvage therapy for focally recurrent high-grade gliomas.

    Get PDF
    Introduction: We examined patient outcomes after Gamma Knife stereotactic radiosurgery (GKSRS) salvage therapy for recurrent high-grade gliomas (HGGs) to determine whether tumor grade or lesion size affected overall survival (OS) and progression-free survival (PFS). Methods: This single-center retrospective study assessed radiographic response and clinical outcomes following GKSRS salvage treatment of recurrent malignant gliomas (January 2005-March 2014). Results: A total of 121 patients (67 female) with 132 tumors were treated. Median (range) PFS was 4.7 (3.9-5.4) months for the cohort, 6.8 (4.6-8.9) months for initial grade 2 tumors, 4.2 (1.9-6.5) months for initial grade 3 tumors, and 4.3 (3.7-4.9) months for initial grade 4 tumors. Patients with small lesions (≤6.7 cm Conclusions: GKSRS offers meaningful salvage therapy with minimal morbidity in appropriately selected patients with focally recurrent HGGs

    Identification of single-dose, dual-echo based CBV threshold for fractional tumor burden mapping in recurrent glioblastoma

    Get PDF
    BackgroundRelative cerebral blood volume (rCBV) obtained from dynamic susceptibility contrast (DSC) MRI is widely used to distinguish high grade glioma recurrence from post treatment radiation effects (PTRE). Application of rCBV thresholds yield maps to distinguish between regional tumor burden and PTRE, a biomarker termed the fractional tumor burden (FTB). FTB is generally measured using conventional double-dose, single-echo DSC-MRI protocols; recently, a single-dose, dual-echo DSC-MRI protocol was clinically validated by direct comparison to the conventional double-dose, single-echo protocol. As the single-dose, dual-echo acquisition enables reduction in the contrast agent dose and provides greater pulse sequence parameter flexibility, there is a compelling need to establish dual-echo DSC-MRI based FTB mapping. In this study, we determine the optimum standardized rCBV threshold for the single-dose, dual-echo protocol to generate FTB maps that best match those derived from the reference standard, double-dose, single-echo protocol.MethodsThe study consisted of 23 high grade glioma patients undergoing perfusion scans to confirm suspected tumor recurrence. We sequentially acquired single dose, dual-echo and double dose, single-echo DSC-MRI data. For both protocols, we generated leakage-corrected standardized rCBV maps. Standardized rCBV (sRCBV) thresholds of 1.0 and 1.75 were used to compute single-echo FTB maps as the reference for delineating PTRE (sRCBV < 1.0), tumor with moderate angiogenesis (1.0 < sRCBV < 1.75), and tumor with high angiogenesis (sRCBV > 1.75) regions. To assess the sRCBV agreement between acquisition protocols, the concordance correlation coefficient (CCC) was computed between the mean tumor sRCBV values across the patients. A receiver operating characteristics (ROC) analysis was performed to determine the optimum dual-echo sRCBV threshold. The sensitivity, specificity, and accuracy were compared between the obtained optimized threshold (1.64) and the standard reference threshold (1.75) for the dual-echo sRCBV threshold.ResultsThe mean tumor sRCBV values across the patients showed a strong correlation (CCC = 0.96) between the two protocols. The ROC analysis showed maximum accuracy at thresholds of 1.0 (delineate PTRE from tumor) and 1.64 (differentiate aggressive tumors). The reference threshold (1.75) and the obtained optimized threshold (1.64) yielded similar accuracy, with slight differences in sensitivity and specificity which were not statistically significant (1.75 threshold: Sensitivity = 81.94%; Specificity: 87.23%; Accuracy: 84.58% and 1.64 threshold: Sensitivity = 84.48%; Specificity: 84.97%; Accuracy: 84.73%).ConclusionsThe optimal sRCBV threshold for single-dose, dual-echo protocol was found to be 1.0 and 1.64 for distinguishing tumor recurrence from PTRE; however, minimal differences were observed when using the standard threshold (1.75) as the upper threshold, suggesting that the standard threshold could be used for both protocols. While the prior study validated the agreement of the mean sRCBV values between the protocols, this study confirmed that their voxel-wise agreement is suitable for reliable FTB mapping. Dual-echo DSC-MRI acquisitions enable robust single-dose sRCBV and FTB mapping, provide pulse sequence parameter flexibility and should improve reproducibility by mitigating variations in preload dose and incubation time

    Coupling remote sensing and eDNA to monitor environmental impact: A pilot to quantify the environmental benefits of sustainable agriculture in the Brazilian Amazon

    Get PDF
    Monitoring is essential to ensure that environmental goals are being achieved, including those of sustainable agriculture. Growing interest in environmental monitoring provides an opportunity to improve monitoring practices. Approaches that directly monitor land cover change and biodiversity annually by coupling the wall-to-wall coverage from remote sensing and the site-specific community composition from environmental DNA (eDNA) can provide timely, relevant results for parties interested in the success of sustainable agricultural practices. To ensure that the measured impacts are due to the environmental projects and not exogenous factors, sites where projects have been implemented should be benchmarked against counterfactuals (no project) and control (natural habitat) sites. Results can then be used to calculate diverse sets of indicators customized to monitor different projects. Here, we report on our experience developing and applying one such approach to assess the impact of shaded cocoa projects implemented by the Instituto de Manejo e Certificação Florestal e Agrícola (IMAFLORA) near São Félix do Xingu, in Pará, Brazil. We used the Continuous Degradation Detection (CODED) and LandTrendr algorithms to create a remote sensing-based assessment of forest disturbance and regeneration, estimate carbon sequestration, and changes in essential habitats. We coupled these remote sensing methods with eDNA analyses using arthropod-targeted primers by collecting soil samples from intervention and counterfactual pasture field sites and a control secondary forest. We used a custom set of indicators from the pilot application of a coupled monitoring framework called TerraBio. Our results suggest that, due to IMAFLORA’s shaded cocoa projects, over 400 acres were restored in the intervention area and the community composition of arthropods in shaded cocoa is closer to second-growth forests than that of pastures. In reviewing the coupled approach, we found multiple aspects worked well, and we conclude by presenting multiple lessons learned

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges

    Erratum: Author Correction: A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic (Nature human behaviour (2021) 5 8 (1089-1110))

    Get PDF

    The effects of SENSE on PROPELLER imaging

    No full text
    PURPOSE: To study how sensitivity encoding (SENSE) impacts periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) image quality, including signal-to-noise ratio (SNR), robustness to motion, precision of motion estimation, and image quality. METHODS: Five volunteers were imaged by three sets of scans. A rapid method for generating the g-factor map was proposed and validated via Monte Carlo simulations. Sensitivity maps were extrapolated to increase the area over which SENSE can be performed and therefore enhance the robustness to head motion. The precision of motion estimation of PROPELLER blades that are unfolded with these sensitivity maps was investigated. An interleaved R-factor PROPELLER sequence was used to acquire data with similar amounts of motion with and without SENSE acceleration. Two neuroradiologists independently and blindly compared 214 image pairs. RESULTS: The proposed method of g-factor calculation was similar to that provided by the Monte Carlo methods. Extrapolation and rotation of the sensitivity maps allowed for continued robustness of SENSE unfolding in the presence of motion. SENSE-widened blades improved the precision of rotation and translation estimation. PROPELLER images with a SENSE factor of 3 outperformed the traditional PROPELLER images when reconstructing the same number of blades. CONCLUSION: SENSE not only accelerates PROPELLER but can also improve robustness and precision of head motion correction, which improves overall image quality even when SNR is lost due to acceleration. The reduction of SNR, as a penalty of acceleration, is characterized by the proposed g-factor method
    corecore