9 research outputs found

    Solid State Systems for Electron Electric Dipole Moment and other Fundamental Measurements

    Full text link
    In 1968, F.L. Shapiro published the suggestion that one could search for an electron EDM by applying a strong electric field to a substance that has an unpaired electron spin; at low temperature, the EDM interaction would lead to a net sample magnetization that can be detected with a SQUID magnetometer. One experimental EDM search based on this technique was published, and for a number of reasons including high sample conductivity, high operating temperature, and limited SQUID technology, the result was not particularly sensitive compared to other experiments in the late 1970's. Advances in SQUID and conventional magnetometery had led us to reconsider this type of experiment, which can be extended to searches and tests other than EDMs (e.g., test of Lorentz invariance). In addition, the complementary measurement of an EDM-induced sample electric polarization due to application of a magnetic field to a paramagnetic sample might be effective using modern ultrasensitive charge measurement techniques. A possible paramagnetic material is Gd-substituted YIG which has very low conductivity and a net enhancement (atomic enhancement times crystal screening) of order unity. Use of a reasonable volume (100's of cc) sample of this material at 50 mK and 10 kV/cm might yield an electron EDM sensitivity of 10−3310^{-33} e cm or better, a factor of 10610^6 improvement over current experimental limits.Comment: 6 pages. Prepared for ITAMP workshop on fundamental physics that was to be held Sept 20-22 2001 in Cambride, MA, but was canceled due to terrorist attack on U.S New version incorporates a number of small changes, most notably the scaling of the sensitivity of the Faraday magnetometer with linewidth is now treated in a saner fashion. The possibility of operating at an even lower temperarture, say 10 microkelvin, is also discusse

    An EBSD study of the deformation of service-aged 316 austenitic steel

    Get PDF
    Electron backscatter diffraction (EBSD) has been used to examine the plastic deformation of an ex-service 316 austenitic stainless steel at 297K and 823K (24 °C and 550 °C)at strain rates 3.5x10-3 to 4 x 10-7 s-1. The distribution of local misorientations was found to depend on the imposed plastic strain following a lognormal distribution at true strains 0.1. At 823 K (550 °C), the distribution of misorientations depended on the applied strain rate. The evolution of lattice misorientations with increasing plastic strain up to 0.23 was quantified using the metrics kernel average misorientation, average intragrain misorientation, and low angle misorientation fraction. For strain rate down to 10-5 s-1 all metrics were insensitive to deformation temperature, mode (tension vs. compression) and orientation of the measurement plane. The strain sensitivity of the different metrics was found to depend on the misorientation ranges considered in their calculation. A simple new metric, proportion of undeformed grains, is proposed for assessing strain in both aged and unaged material. Lattice misorientations build up with strain faster in aged steel than in un-aged material and most of the metrics were sensitive to the effects of thermal aging. Ignoring aging effects leads to significant overestimation of the strains around welds. The EBSD results were compared with nanohardness measurements and good agreement established between the two techniques of assessing plastic strain in aged 316 steel

    Sc(iii) complexes with neutral N3- and SNS-donor ligands – a spectroscopic study of the activation of ethene polymerisation catalysts

    No full text
    Scandium trichloride complexes with tridentate N-3- and S2N-donor ligands (L-3) have been synthesised and characterised by IR, H-1, C-13{H-1} and Sc-45 NMR spectroscopy, microanalysis, and solid state and solution XAFS spectroscopy. Catalytic testing of a subset of these complexes with ethene has been undertaken in chlorobenzene with MMAO-3A and PMAO-IP at 60 degrees C and 40 bar ethene, giving low activity ethene polymerisation. The reactions of these complexes with MeLi and AlMe3 were studied by H-1, C-13{H-1}, Al-27 and Sc-45 NMR spectroscopy and in situ via Sc K-edge XAFS spectroscopy. Three or four mol. equivalents of MeLi react with [ScCl3(Me-3-tacn)] in THF solution to form [ScMe3(Me-3-tacn)] cleanly, while complexes of type [ScCl3(R-SNS)] {R-SNS = HN(CH2CH2SC10H21)(2)} form two different species proposed to be [ScMe3(R-SN(Li)S)] and [ScMe2(R-SN-S)]. In contrast, in situ Sc-45 NMR and Sc K-edge XAFS spectroscopic studies of the reaction of [ScCl3(Me-3-tacn)] with 10 mol. equivalents of AlMe3 strongly suggest that alkylation at the Sc(III) centre does not occur, instead retaining the Cl3N3 coordination environment and most likely forming Sc-Cl-AlMe3 bridging interactions. Similar studies on [ScCl3(decyl-SNS)] with 10 mol. equivalents of AlMe3 are also consistent with this, indicating that alkylation at the Sc centre does not occur except in the presence of co-catalyst [Ph3C][Al{OC(CF3)(3)}(4)] and the alpha-alkene, hex-1-ene
    corecore