4,088 research outputs found

    Responsiveness of Industrial Growth to External Debt Question in Nigeria

    Get PDF
    A high level of industrial growth is associated with higher economicgrowth and development. Still the argument remains whether this mechanismissustainable in Nigeria, given the low level of access to external capital flows andlowdomestic capital investment. The study, therefore, employed AutoregressiveDistributed Lag Model (ARDL), variance decompositions, and impulse responsefunctions to examine the long-run ef ect of external debt on industrial growthinNigeria. The study used time series data from 1985 to 2019, and the findings revealthat external debt has a negative and significant ef ect on industrial growth inthelong run. The evidence from the sensitivity analysis also indicated a negativeresponse of industrial growth to external debt. Consequently, policymakers in Nigeriamust ensure ef ective management of external borrowing through evidence-basedpolicies on external debt and domestic capital formation that can create enablingbusiness environment and stimulate investorsā€™ confidence to accelerate real industrialgrowth in Nigeria

    A theoretical explanation for the Central Molecular Zone asymmetry

    Full text link
    It has been known for more than thirty years that the distribution of molecular gas in the innermost 300 parsecs of the Milky Way, the Central Molecular Zone, is strongly asymmetric. Indeed, approximately three quarters of molecular emission comes from positive longitudes, and only one quarter from negative longitudes. However, despite much theoretical effort, the origin of this asymmetry has remained a mystery. Here we show that the asymmetry can be neatly explained by unsteady flow of gas in a barred potential. We use high-resolution 3D hydrodynamical simulations coupled to a state-of-the-art chemical network. Despite the initial conditions and the bar potential being point-symmetric with respect to the Galactic Centre, asymmetries develop spontaneously due to the combination of a hydrodynamical instability known as the "wiggle instability" and the thermal instability. The observed asymmetry must be transient: observations made tens of megayears in the past or in the future would often show an asymmetry in the opposite sense. Fluctuations of amplitude comparable to the observed asymmetry occur for a large fraction of the time in our simulations, and suggest that the present is not an exceptional moment in the life of our Galaxy.Comment: Accepted for publication in MNRAS. Videos of the simulations are available at http://www.ita.uni-heidelberg.de/~mattia/download.htm

    Two-pathogen model with competition on clustered networks

    Get PDF
    Networks provide a mathematically rich framework to represent social contacts sufficient for the transmission of disease. Social networks are often highly clustered and fail to be locally tree-like. In this paper, we study the effects of clustering on the spread of sequential strains of a pathogen using the generating function formulation under a complete cross-immunity coupling, deriving conditions for the threshold of coexistence of the second strain. We show that clustering reduces the coexistence threshold of the second strain and its outbreak size in Poisson networks, whilst exhibiting the opposite effects on uniform-degree models. We conclude that clustering within a population must increase the ability of the second wave of an epidemic to spread over a network. We apply our model to the study of multilayer clustered networks and observe the fracturing of the residual graph at two distinct transmissibilities.Publisher PDFPeer reviewe

    Level of muscle regeneration in limb-girdle muscular dystrophy type 2I relates to genotype and clinical severity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The balance between muscle regeneration and ongoing degeneration is a relationship that greatly influences the progression of muscular dystrophy. Numerous factors may influence the muscle regeneration, but more information about the relationship between genotype, clinical severity and the ability to regenerate is needed.</p> <p>Methods</p> <p>Muscle biopsies were obtained from the tibialis anterior muscle, and frozen sections were stained for general histopathological and immunohistological evaluation. Differences between groups were considered statistical significant at <it>P </it>< 0.05 using Student's unpaired <it>t</it>-test.</p> <p>Results</p> <p>We found that all patients with limb-girdle muscular dystrophy type 2I (LGMD2I) had a large number of internally nucleated fibers, a sign of previous regeneration. The level of expression of muscle-specific developmental proteins, such as neonatal myosin heavy chain (nMHC) and myogenin, was related to the clinical severity. Additionally, we found that the majority of nMHC-positive fibers did not stain positively for utrophin in patients who were compound heterozygous for the L276I mutation, suggesting that the predominant form of regeneration in these patients is fiber repair rather than formation of new fibers. Double staining showed that many smaller nMHC-positive fibers were positive for antibodies against the glycosylation on Ī±-dystroglycan, suggesting that such glycosylation may be a result of muscle regeneration.</p> <p>Conclusion</p> <p>Severely affected patients with LGMD2I have a high level of muscle degeneration, which leads to a high rate of regeneration, but this is insufficient to change the imbalance between degeneration and regeneration, ultimately leading to progressive muscle wasting. Detailed information regarding the level and rate of muscle regeneration and potential obstructions of the regenerative pathway should be of use for future therapies involving satellite-cell activation.</p

    Degree correlations in graphs with clique clustering

    Get PDF
    Funding: This work was partially supported by the UK Engineering and Physical Sciences Research Council under grant number EP/N007565/1 (Science of Sensor Systems Software).Correlations among the degrees of nodes in random graphs often occur when clustering is present. In this paper we define a joint-degree correlation function for nodes in the giant component of clustered configuration model networks which are comprised of higher-order subgraphs. We use this model to investigate, in detail, the organisation among nearest-neighbour subgraphs for random graphs as a function of subgraph topology as well as clustering. We find an expression for the average joint degree of a neighbour in the giant component at the critical point for these networks. Finally, we introduce a novel edge-disjoint clique decomposition algorithm and investigate the correlations between the subgraphs of empirical networks.PostprintPeer reviewe

    Random graphs with arbitrary clustering and their applications

    Get PDF
    The structure of many real networks is not locally treelike and, hence, network analysis fails to characterize their bond percolation properties. In a recent paper [P. Mann, V. A. Smith, J. B. O. Mitchell, and S. Dobson, arXiv:2006.06744], we developed analytical solutions to the percolation properties of random networks with homogeneous clustering (clusters whose nodes are degree equivalent). In this paper, we extend this model to investigate networks that contain clusters whose nodes are not degree equivalent, including multilayer networks. Through numerical examples, we show how this method can be used to investigate the properties of random complex networks with arbitrary clustering, extending the applicability of the configuration model and generating function formulation.Publisher PDFPeer reviewe
    • ā€¦
    corecore