5 research outputs found

    Anomalous Excitation Spectra of Frustrated Quantum Antiferromagnets

    Get PDF
    We use series expansions to study the excitation spectra of spin-1/2 antiferromagnets on anisotropic triangular lattices. For the isotropic triangular lattice model (TLM) the high-energy spectra show several anomalous features that differ strongly from linear spin-wave theory (LSWT). Even in the Neel phase, the deviations from LSWT increase sharply with frustration, leading to roton-like minima at special wavevectors. We argue that these results can be interpreted naturally in a spinon language, and provide an explanation for the previously observed anomalous finite-temperature properties of the TLM. In the coupled-chains limit, quantum renormalizations strongly enhance the one-dimensionality of the spectra, in agreement with experiments on Cs_2CuCl_4.Comment: 4 pages, 5 figures. New Fig. 3 with higher-order series data, paper shortened, references updated, one added (Ref. 28), minor changes otherwise. Published versio

    Excitation spectra and ground state properties of the layered spin-1/2 frustrated antiferromagnets Cs_2CuCl_4 and Cs_2CuBr_4

    Get PDF
    We use series expansion methods to study ground- and excited-state properties in the helically ordered phase of spin-1/2 frustrated antiferromagnets on an anisotropic triangular lattice. We calculate the ground state energy, ordering wavevector, sublattice magnetization and one-magnon excitation spectrum for parameters relevant to Cs_2CuCl_4 and Cs_2CuBr_4. Both materials are modeled in terms of a Heisenberg model with spatially anisotropic exchange constants; for Cs_2CuCl_4 we also take into account the additional Dzyaloshinskii-Moriya (DM) interaction. We compare our results for Cs_2CuCl_4 with unpolarized neutron scattering experiments and find good agreement. In particular, the large quantum renormalizations of the one-magnon dispersion are well accounted for in our analysis, and inclusion of the DM interaction brings the theoretical predictions for the ordering wavevector and the magnon dispersion closer to the experimental results.Comment: 10 pages, 8 figure

    Excitation spectra of the spin-1/2 triangular-lattice Heisenberg antiferromagnet

    Get PDF
    We use series expansion methods to calculate the dispersion relation of the one-magnon excitations for the spin-1/2 triangular-lattice nearest-neighbor Heisenberg antiferromagnet above a three-sublattice ordered ground state. Several striking features are observed compared to the classical (large-S) spin-wave spectra. Whereas at low energies the dispersion is only weakly renormalized by quantum fluctuations, significant anomalies are observed at high energies. In particular, we find roton-like minima at special wave-vectors and strong downward renormalization in large parts of the Brillouin zone, leading to very flat or dispersionless modes. We present detailed comparison of our calculated excitation energies in the Brillouin zone with the spin-wave dispersion to order 1/S calculated recently by Starykh, Chubukov, and Abanov [cond-mat/0608002]. We find many common features but also some quantitative and qualitative differences. We show that at temperatures as low as 0.1J the thermally excited rotons make a significant contribution to the entropy. Consequently, unlike for the square lattice model, a non-linear sigma model description of the finite-temperature properties is only applicable at extremely low temperatures.Comment: 14 pages, 11 figure

    Ground-state fidelity of Luttinger liquids: A wave functional approach

    Full text link
    We use a wave functional approach to calculate the fidelity of ground states in the Luttinger liquid universality class of one-dimensional gapless quantum many-body systems. The ground-state wave functionals are discussed using both the Schrodinger (functional differential equation) formulation and a path integral formulation. The fidelity between Luttinger liquids with Luttinger parameters K and K' is found to decay exponentially with system size, and to obey the symmetry F(K,K')=F(1/K,1/K') as a consequence of a duality in the bosonization description of Luttinger liquids.Comment: 13 pages, IOP single-column format. Sec. 3 expanded with discussion of short-distance cut-off. Some typos corrected. Ref. 44 in v2 is now footnote 2 (moved by copy editor). Published versio

    Finite-size geometric entanglement from tensor network algorithms

    No full text
    The global geometric entanglement (GE) is studied in the context of newly developed tensor network algorithms for finite systems. For onedimensional quantum spin systems it is found that, at criticality, the leading finite-size correction to the global GE per site behaves as b/n, where n is the size of the system and b a given coefficient. Our conclusion is based on the computation of the GE per spin for the quantum Ising model in a transverse magnetic field and for the spin-1/2 XXZ model. We also discuss the possibility of coefficient b being universal
    corecore