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We use series expansion methods to study ground- and excited-state properties in the helically ordered phase
of spin-1 /2 frustrated antiferromagnets on an anisotropic triangular lattice. We calculate the ground state
energy, ordering wave vector, sublattice magnetization and one-magnon excitation spectrum for parameters
relevant to Cs2CuCl4 and Cs2CuBr4. Both materials are modeled in terms of a Heisenberg model with spatially
anisotropic exchange constants; for Cs2CuCl4 we also take into account the additional Dzyaloshinskii-Moriya
�DM� interaction. We compare our results for Cs2CuCl4 with unpolarized neutron scattering experiments and
find good agreement. In particular, the large quantum renormalizations of the one-magnon dispersion are well
accounted for in our analysis, and inclusion of the DM interaction brings the theoretical predictions for the
ordering wave vector and the magnon dispersion closer to the experimental results.
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I. INTRODUCTION

The study of frustrated quantum antiferromagnets is cen-
tral to modern condensed matter physics. Much of the inter-
est in these many-body systems stems from the possibility,
first envisaged by Anderson,1 that their quantum fluctuations
may be so strong as to lead to exotic “spin-liquid” ground
states characterized by the absence of broken symmetries of
any kind. Another hallmark signature of spin liquids is the
existence of deconfined fractionalized spin-1 /2 excitations,
usually referred to as spinons. Unfortunately it has been very
hard to find experimental realizations of such states. Impor-
tant progress has however been made recently with the iden-
tification of some materials which may have, or at least
be close to having, a spin-liquid ground state. Two such
promising candidates are the organic compound
�-�BEDT-TTF�2Cu2�CN�3 �Ref. 2� and the layered S=1/2
frustrated antiferromagnet Cs2CuCl4.

The magnetic properties of Cs2CuCl4 have been exten-
sively studied using neutron scattering.3 At low temperatures
T�TN=0.62 K long-range helical magnetic order is ob-
served and the low-energy excitation spectra contain rela-
tively sharp modes characteristic of magnons, the expected
Goldstone modes. The magnon dispersion does however
show very strong renormalizations compared to linear spin-
wave theory. Furthermore, the dominant feature of the spec-
tra is in fact a broad continuum, occurring at medium to high
energies, which carries most of the spectral weight and
which persists also for temperatures above TN. The interpre-
tation of this continuum has recently been the subject of
much debate.3–13

The most interesting hypothesis, already suggested in Ref.
3, is that the continuum is due to two-spinon scattering re-
sulting from Cs2CuCl4 being close to a quantum phase tran-
sition to a two-dimensional spin-liquid state. A number of
theoretical proposals have been made regarding the nature of
the spin liquid that might be involved in such an unconven-

tional scenario.4,6–8,11,12 An alternative hypothesis, that the
effects of magnon-magnon scattering included within a stan-
dard �nonlinear� spin-wave approach might be able to ex-
plain the experimental results, was recently explored in Refs.
9 and 10. While qualitative features of the calculated spectra
were found to be similar to the experimental ones, the quan-
titative agreement was however not satisfactory. In particu-
lar, the obtained quantum renormalization of the magnon dis-
persion �calculated to lowest order in magnon-magnon
interactions� was significantly lower than found experimen-
tally.

The magnetic interactions in Cs2CuCl4 are sufficiently
weak that the external magnetic field required to fully polar-
ize the spins is experimentally accessible. By measuring the
magnon dispersion relation in this fully polarized state �in
which quantum fluctuations are completely suppressed by
the applied field�, it was found14 that the layers in Cs2CuCl4
are nearly decoupled from each other and well described by
a spin-1 /2 triangular-lattice Heisenberg antiferromagnet
with exchange constants J and J� �defined in Fig. 1� with
J� /J�1/3, weakly perturbed by an additional intralayer in-
teraction of Dzyaloshinskii-Moriya �DM� type,15 of strength
D /J�0.05. Although weak, the DM interaction has several
important consequences, one being that the ordering plane of
the spins coincides with the plane of the triangular lattice

FIG. 1. Exchange constants J, J� and lattice basis vectors �1, �2

on a triangular lattice. The standard notation for axes in Cs2CuCl4 is
also indicated.
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because the DM interaction makes the latter an “easy” plane.
Theoretical studies of Cs2CuCl4 and models relevant to it

have been carried out using many different methods. For the
zero-field case, which is our focus here, these methods in-
clude spin-wave theory,9,10,16 series expansions,17 variational
approaches,12,18 and various field-theoretical approach-
es.4–8,11,13,19 While most of these studies only considered the
Heisenberg part of the Hamiltonian, some of them also in-
vestigated the effects of the DM interaction. References 9
and 10, using the nonlinear spin-wave approach, found that
several quantities, including the ordering wave vector and
the quantum renormalization of the magnon dispersion, were
quite sensitive to the DM interaction, and that the reduced
spin-rotation symmetry of the Hamiltonian for D�0 also
leads to a gap in the magnon dispersion at the ordering wave
vector. Reference 10 also studied the sublattice magnetiza-
tion as a function of D �for values of J, J� appropriate for
Cs2CuCl4� and found that it vanishes when D /J�0.008, and
hence that the DM interaction is crucial to stabilize the heli-
cal magnetic order in Cs2CuCl4. The same qualitative con-
clusion was reached in Ref. 13 which used a quasi-one-
dimensional approach, treating the interchain interactions �J�
and D� using a perturbative renormalization group analysis;
these authors found that in the absence of the DM interaction
the ground state has collinear antiferromagnetic order. Fi-
nally, the easy-plane nature of the Hamiltonian when D�0
plays an essential role in the algebraic vortex-liquid scenario
proposed for Cs2CuCl4 in Ref. 11; also in this study the
helical magnetic order was found to be driven by the DM
interaction.

Another interesting material is Cs2CuBr4, which can be
described in terms of a spin-1 /2 triangular-lattice Heisenberg
antiferromagnet with J� /J�1/2.20 Compared to Cs2CuCl4
this material is therefore more frustrated �i.e., closer to the
isotropic limit J=J�� and further away from the one-
dimensional limit J�J�. The thermodynamic properties of
both materials, particularly the uniform magnetic susceptibil-
ity, have been extensively studied. There are also a large
number of organic materials from superconducting families
that have insulating magnetic phases that can be described by
a spatially anisotropic triangular-lattice model.21 Recent high
temperature series expansion studies of these systems20

found that a large class of the organic materials appeared
close to the isotropic triangular-lattice limit, while the inor-
ganic materials were closer to the one-dimensional limit.

In this paper we study spin-1 /2 triangular-lattice antifer-
romagnets using zero-temperature high-order series expan-
sions. We focus on the case J�J� for which, according to
our previous series expansion study in Ref. 17, the ground
state has noncollinear �helical� long-range magnetic order
and the ordering wave vector varies continuously with the
model parameters. We calculate the ground state energy, or-
dering wave vector, sublattice magnetization, and magnon
dispersion for values of J� /J relevant to Cs2CuCl4 and
Cs2CuBr4. For Cs2CuCl4 we also consider the effects of the
DM interaction. We compare our results with those of other
theoretical approaches and with neutron scattering experi-
ments. A few of the results discussed in this paper have al-
ready been briefly presented in Ref. 22.

The outline of the paper is as follows. In Sec. II we de-
scribe the model Hamiltonian. In Sec. III we discuss the

series expansion method used for studying zero-temperature
properties in the helical phase. In Secs. IV and V we discuss
our results for ground state properties and the magnon dis-
persion, respectively. Finally, our conclusions are presented
in Sec. VI.

II. MODEL HAMILTONIAN

The antiferromagnetic spin-1 /2 Heisenberg model with
spatially anisotropic exchange constants on a triangular lat-
tice forms the basis for a theoretical description of the mag-
netic properties of both Cs2CuCl4 and Cs2CuBr4. The
Heisenberg Hamiltonian reads

HH = �
R

�JSR · SR+�1+�2
+ J�SR · �SR+�1

+ SR+�2
�� , �1�

where SR is the spin operator on site R, J and J� are the
antiferromagnetic exchange constants, and �1 and �2 are
nearest-neighbor lattice vectors, as defined in Fig. 1.

When the ground state of HH has magnetic long-range
order, the spin expectation value can be written

�SR� = M�n1 cos�Q · R� + n2 sin�Q · R�� , �2�

where M is the sublattice magnetization, n1 and n2 are two
arbitrary orthogonal unit vectors, and Q= �0,Q ,0� is the or-
dering wave vector with cos�Qb /2�=cos q, where q �2q� is
the angle between nearest-neighbor spins coupled by J� �J�
and b is the lattice constant in the b̂ direction �see Fig. 1�.
For classical spins �corresponding to the limit of spin
S→��, M =S and q=arccos�−J� /2J� �for J�J� /2�. Equation
�2� then implies that the magnetic order is helical, with the
ordering plane spanned by the vectors n1 and n2. For quan-
tum spins, quantum fluctuations could in principle kill the
magnetic order. However, in one of our earlier series expan-
sion studies17 of the model �1� for S=1/2, the magnetic order
appeared to be robust as long as J /J� is not too large. The
quantum fluctuations do however renormalize Q �and hence
q� away from the classical value and reduce the strength of
the ordering so that the sublattice magnetization M �S.

Cs2CuBr4 can be described by the Hamiltonian �1� with
J /J��2.20 In contrast, Cs2CuCl4 has J=0.374�5� meV
and J�=0.128�5� meV, giving a more anisotropic ratio J /J�
�2.92.14 Furthermore, the spin Hamiltonian of Cs2CuCl4
also contains a Dzyaloshinskii-Moriya �DM� interaction15

HDM of the form14

HDM = �
R

D · SR � �SR+�1
+ SR+�2

� , �3�

where D lies along the a direction, perpendicular to the plane
of the triangular lattice, with D=0.020�2� meV, giving
D /J��0.16. Thus the DM interaction is numerically a rela-
tively small perturbation on the dominant Heisenberg Hamil-
tonian HH. Nevertheless, the DM interaction has several no-
table consequences. It breaks the full SU�2� spin rotation
symmetry of the Heisenberg part down to U�1� by making
the plane of the triangular lattice an “easy plane” which
therefore becomes the ordering plane of the spins. Further-
more, as the DM interaction can be seen to give rise to a
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linear coupling to the unit vector n1�n2 �which points per-
pendicular to the ordering plane�, it selects a unique direction
for this vector, corresponding to a specific chirality or hand-
edness of the spin order. In Cs2CuCl4 the direction of D in
fact alternates from layer to layer14 and hence the chirality
alternates as well.

When discussing Cs2CuCl4 in this paper we will consider
both the Hamiltonian HH+HDM with D /J�=0.16 as well as
the more simplified model defined by neglecting the DM
interaction, i.e., D=0. In Cs2CuCl4 there is also an antiferro-
magnetic interlayer exchange interaction J�,14 but because
this is very small �J�=0.017�2� meV�J /45� and because its
effectiveness in coupling the layers is further reduced by the
alternating chirality, we choose not to include this interlayer
interaction in our analysis, thus focussing on a single layer.

III. SERIES EXPANSIONS IN THE HELICALLY
ORDERED PHASE

In this section we discuss some aspects of the series ex-
pansion analysis of the helically ordered phase.

Following Ref. 23, we assume that the spins order in the
xz plane �which would be the bc plane in Cs2CuCl4�, with D
pointing in the perpendicular direction. We rotate all the
spins so as to have a ferromagnetic ground state, with the
resulting Hamiltonian H,

H = H1 + JH2 + H3, �4�

where

H1 = J cos�2q��
�in�

Si
zSn

z + �J� cos�q� − D sin�q���
�ij�

Si
zSj

z,

�5�

H2 = �
�in�

Si
ySn

y + cos�2q�Si
xSn

x + sin�2q��Si
zSn

x − Si
xSn

z� , �6�

H3 = �
�ij�

J�Si
ySj

y + �J� cos�q� − D sin�q��Si
xSj

x

+ �J� sin�q� + D cos�q���Si
zSj

x − Si
xSj

z� , �7�

where the sum �in� is over nearest-neighbor sites connected
by “horizontal” bonds in Fig. 1 with exchange interaction J,
and the sum �ij� is over nearest-neighbor sites connected by
“diagonal” bonds with exchange interaction J�.

Next, we introduce the Hamiltonian

H��� 	 H0 + �V , �8�

where

H0 = H1 − t�
i

�Si
z − 1/2� , �9�

V = JH2 + H3 + t�
i

�Si
z − 1/2� . �10�

The last term of strength t in both H0 and V is a local field
term, which can be included to improve convergence.

H��=0� is a ferromagnetic Ising model with two degenerate
ground states, while H��=1� is the model whose properties
we are interested in. We use linked-cluster methods to de-
velop series expansion in powers of � for ground state prop-
erties and the magnon excitation spectra.

For J�J�, the lattice has C2v symmetry �the symmetry
operations are the identity, inversion, and reflections about
the b and c axes�, and the series for the spin-triplet excitation
spectra has the following form:

��kx,ky�/J� = �
r=0

�

�r�
m,n

cr,m,n cos
m

2
kx�cos
n�3

2
ky� ,

�11�

where cr,m,n are series coefficients, m and n are integers,
representing a hopping over distance �m /2 ,n�3/2�, and
m+n is a even number. For this case, series for the spin-
triplet dispersion has been computed to order �8, and the
calculations involve a list of 25 022 linked clusters, up to
nine sites. The series coefficients cr,m,n for J=2.92, J�=1,
q=1.64, D=0.16, and t=4 are given in Table I.

For more details we refer to Ref. 23 where series expan-
sions for the ground state properties and magnon dispersion
of the spin-1 /2 Heisenberg model on the anisotropic trian-
gular lattice are discussed at length.24

IV. GROUND STATE PROPERTIES

A. Ordering wave vector

In Fig. 2 we present results for the ground state energy per
site, as a function of the ordering angle q, for various model
parameters. The actual, realized, value of q is that which
minimizes the ground state energy.

Cs2CuBr4 [Fig. 2(a)]. The value of q predicted by the
Ising expansion is seen to be considerably smaller than the
classical value �right dashed line� but is quite close to the
value predicted from a dimer expansion �left dashed line; Eq.
�16� in Ref. 17�.

Cs2CuCl4 [Fig. 2(b)]. The ordering wave vector Q
�equivalently, the ordering angle q� is conventionally ex-
pressed in terms of the incommensuration 	, defined as the
deviation between Q and the antiferromagnetic �with respect
to the b direction� wave vector 
 /b, measured in units of
2
 /b: 		�Q−
 /b� / �2
 /b�=q /
−1/2. For D=0 the series
calculation gives q�1.59 which implies 	�0.006, while for
D /J�=0.16, q�1.64 which gives 	�0.022. Thus inclusion
of the DM interaction increases the incommensuration and
brings it much closer to the experimental value
	=0.030�2�.14

In Table II we compare our results for the incommensu-
ration 	 for the helically ordered phase in Cs2CuCl4 with
experiments and with predictions from some other theoreti-
cal approaches.

B. Sublattice magnetization

For Cs2CuCl4 �J /J�=2.92 and D /J�=0.16� we find the
sublattice magnetization to be M =0.213�10�. In this result
the main source of error is the uncertainty in the angle q. It is
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TABLE I. Series coefficients for the magnon dispersion for the isotropic triangular-lattice model, calculated for J=2.92, J�=1, q
=1.64, D=0.16, and t=4 in Eqs. �9� and �10�. Nonzero coefficients cr,m,n in Eq. �11� up to order r=8 are listed.

�r ,m ,n� cr,m,n �r ,m ,n� cr,m,n �r ,m ,n� cr,m,n �r ,m ,n� cr,m,n

�0, 0, 0� 7.349606933 �4, 1, 3� 7.578150248�10−4 �4, 7, 1� −9.342152056�10−3 �6, 7, 5� −1.670797799�10−6

�1, 0, 0� −4.000000000 �5, 1, 3� −9.976179492�10−4 �5, 7, 1� −1.835064338�10−2 �7, 7, 5� 1.015387605�10−6

�2, 0, 0� 6.038563795�10−2 �6, 1, 3� −2.926714357�10−3 �6, 7, 1� −2.367732439�10−2 �8, 7, 5� 5.830972082�10−6

�3, 0, 0� −6.217604565�10−2 �7, 1, 3� −4.924224688�10−3 �7, 7, 1� −2.521951807�10−2 �6, 8, 4� −1.600507150�10−5

�4, 0, 0� −1.125358729�10−1 �8, 1, 3� −6.508161119�10−3 �8, 7, 1� −2.415728150�10−2 �7, 8, 4� −2.409589103�10−5

�5, 0, 0� −1.162865812�10−1 �3, 3, 3� 6.950474681�10−4 �4, 8, 0� −6.795995712�10−3 �8, 8, 4� −2.189863027�10−5

�6, 0, 0� −9.649286838�10−2 �4, 3, 3� −9.066263964�10−4 �5, 8, 0� −1.353032723�10−2 �6, 9, 3� −8.269690490�10−5

�7, 0, 0� −6.982209428�10−2 �5, 3, 3� −1.496710785�10−3 �6, 8, 0� −1.705500588�10−2 �7, 9, 3� −1.831650139�10−4

�8, 0, 0� −4.568446552�10−2 �6, 3, 3� −5.060095359�10−4 �7, 8, 0� −1.715246720�10−2 �8, 9, 3� −2.277789431�10−4

�1, 1, 1� 7.712345303�10−1 �7, 3, 3� 1.528045822�10−3 �8, 8, 0� −1.507009210�10−2 �6, 10, 2� −2.517791809�10−4

�2, 1, 1� −1.685921734�10−1 �8, 3, 3� 3.781329536�10−3 �5, 1, 5� 1.418417481�10−5 �7, 10, 2� −6.579095073�10−4

�3, 1, 1� −2.106120525�10−1 �3, 4, 2� 8.064630409�10−3 �6, 1, 5� 7.457692880�10−6 �8, 10, 2� −9.157527309�10−4

�4, 1, 1� −1.865808906�10−1 �4, 4, 2� 8.310784630�10−3 �7, 1, 5� −6.287690575�10−6 �6, 11, 1� −4.658726892�10−4

�5, 1, 1� −1.379395553�10−1 �5, 4, 2� 9.603610069�10−3 �8, 1, 5� −1.316193701�10−5 �7, 11, 1� −1.474734326�10−3

�6, 1, 1� −9.056954635�10−2 �6, 4, 2� 1.286421148�10−2 �5, 3, 5� 7.092087407�10−6 �8, 11, 1� −2.737063946�10−3

�7, 1, 1� −5.546855043�10−2 �7, 4, 2� 1.664667471�10−2 �6, 3, 5� −2.077134408�10−6 �6, 12, 0� −2.330119692�10−4

�8, 1, 1� −3.373111871�10−2 �8, 4, 2� 1.954078358�10−2 �7, 3, 5� −1.309394434�10−5 �7, 12, 0� −8.136447772�10−4

�1, 2, 0� 1.396200322�10−2 �3, 5, 1� 2.242175366�10−2 �8, 3, 5� −1.292053918�10−5 �8, 12, 0� −1.712422519�10−3

�2, 2, 0� −1.505333368�10−2 �4, 5, 1� 1.427117691�10−2 �5, 5, 5� 1.418417481�10−6 �7, 1, 7� 1.364242160�10−7

�3, 2, 0� −2.815674423�10−4 �5, 5, 1� −2.602862242�10−3 �6, 5, 5� −5.076936139�10−6 �8, 1, 7� 1.106865429�10−7

�4, 2, 0� 1.594690655�10−2 �6, 5, 1� −1.521289949�10−2 �7, 5, 5� −7.060086129�10−6 �7, 3, 7� 8.185452960�10−8

�5, 2, 0� 2.998362910�10−2 �7, 5, 1� −1.993026012�10−2 �8, 5, 5� 1.083485410�10−6 �8, 3, 7� 1.069367604�10−8

�6, 2, 0� 3.941680852�10−2 �8, 5, 1� −1.888733912�10−2 �5, 6, 4� 2.746050501�10−5 �7, 5, 7� 2.728484320�10−8

�7, 2, 0� 4.308338742�10−2 �3, 6, 0� 4.006413979�10−4 �6, 6, 4� 1.039487431�10−5 �8, 5, 7� −4.924369043�10−8

�8, 2, 0� 4.120905564�10−2 �4, 6, 0� −3.331359320�10−3 �7, 6, 4� −1.115844752�10−5 �7, 7, 7� 3.897834743�10−9

�2, 0, 2� −2.650432163�10−2 �5, 6, 0� −6.163747248�10−3 �8, 6, 4� 6.482844962�10−6 �8, 7, 7� −3.233550435�10−8

�3, 0, 2� 3.538137283�10−3 �6, 6, 0� −7.199966978�10−3 �5, 7, 3� 2.089666851�10−4 �7, 8, 6� 1.034023057�10−7

�4, 0, 2� 2.465629073�10−3 �7, 6, 0� −7.409354256�10−3 �6, 7, 3� 2.467736333�10−4 �8, 8, 6� −1.557033299�10−7

�5, 0, 2� −1.050320907�10−2 �8, 6, 0� −8.061924799�10−3 �7, 7, 3� −3.668402903�10−5 �7, 9, 5� 1.173239911�10−6

�6, 0, 2� −2.242983874�10−2 �4, 0, 4� −9.054115944�10−5 �8, 7, 3� −5.809689111�10−4 �8, 9, 5� 7.836228877�10−7

�7, 0, 2� −2.768399107�10−2 �5, 0, 4� −5.479146209�10−5 �5, 8, 2� 7.675228288�10−4 �7, 10, 4� 7.377737697�10−6

�8, 0, 2� −2.619803879�10−2 �6, 0, 4� 3.687786670�10−6 �6, 8, 2� 1.512127062�10−3 �8, 10, 4� 1.539074513�10−5

�2, 2, 2� −2.650432163�10−2 �7, 0, 4� −1.852548500�10−5 �7, 8, 2� 1.521619340�10−3 �7, 11, 3� 2.754833548�10−5

�3, 2, 2� −9.979720263�10−4 �8, 0, 4� −1.568789895�10−4 �8, 8, 2� 6.001765269�10−4 �8, 11, 3� 8.079901649�10−5

�4, 2, 2� 6.636359222�10−3 �4, 2, 4� −1.207215459�10−4 �5, 9, 1� 1.165606703�10−3 �7, 12, 2� 5.930561117�10−5

�5, 2, 2� 5.391428994�10−3 �5, 2, 4� −2.149262987�10−5 �6, 9, 1� 2.854089455�10−3 �8, 12, 2� 1.954393847�10−4

�6, 2, 2� 2.036622085�10−3 �6, 2, 4� 7.358270843�10−5 �7, 9, 1� 4.479815788�10−3 �7, 13, 1� 5.956579054�10−5

�7, 2, 2� 1.434767818�10−4 �7, 2, 4� 5.557974820�10−5 �8, 9, 1� 5.794251007�10−3 �8, 13, 1� 1.916748738�10−4

�8, 2, 2� 6.693067703�10−4 �8, 2, 4� −3.425847619�10−5 �5, 10, 0� 2.060334673�10−5 �7, 14, 0� 1.040120579�10−6

�2, 3, 1� −3.084059676�10−1 �4, 4, 4� −3.018038648�10−5 �6, 10, 0� −1.952180586�10−4 �8, 14, 0� −1.495168851�10−5

�3, 3, 1� −1.588761190�10−1 �5, 4, 4� 6.075933723�10−5 �7, 10, 0� −6.035252148�10−4 �8, 0, 8� −7.586845473�10−9

�4, 3, 1� −4.101867358�10−2 �6, 4, 4� 1.000503366�10−4 �8, 10, 0� −9.362009169�10−4 �8, 2, 8� −1.213894466�10−8

�5, 3, 1� 3.354266372�10−2 �7, 4, 4� 9.862298579�10−5 �6, 0, 6� −7.263598281�10−7 �8, 4, 8� −6.069460194�10−9

�6, 3, 1� 7.243569855�10−2 �8, 4, 4� 1.673415457�10−4 �7, 0, 6� −5.650646253�10−7 �8, 6, 8� −1.734128016�10−9

�7, 3, 1� 8.854496129�10−2 �4, 5, 3� −4.901068912�10−4 �8, 0, 6� 2.353281314�10−7 �8, 8, 8� −2.167670129�10−10

�8, 3, 1� 9.234591989�10−2 �5, 5, 3� 9.426485008�10−5 �6, 2, 6� −1.089539742�10−6 �8, 9, 7� −6.526162920�10−9

�2, 4, 0� −4.736398330�10−1 �6, 5, 3� 1.397521826�10−3 �7, 2, 6� −4.743845804�10−7 �8, 10, 6� −8.596029431�10−8

�3, 4, 0� −4.199253740�10−1 �7, 5, 3� 2.688369202�10−3 �8, 2, 6� 1.060978601�10−6 �8, 11, 5� −6.482179010�10−7
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interesting to compare this with predictions from other theo-
retical approaches �see Table II�. In particular, by using the
1/S expansion and taking into account quantum corrections
up to and including order 1 /S2 to the classical result, Ref. 10
found the slightly smaller value M �0.18 for the same pa-
rameters, and also predicted that M =0 for D=0, i.e., that
quantum fluctuations would be strong enough to completely
melt the magnetically ordered state in the absence of the DM
interaction. In contrast, our analysis indicates a small but
nonzero value M �0.10 for the magnetization when D=0,
although it should be noted that the error bars are significant
�see Fig. 6 in Ref. 17�. We conclude that in both approaches
the DM interaction is found to cause a considerable suppres-
sion of quantum fluctuations and strengthen the magnetic
ordering tendencies. Including the interlayer coupling J� is
not expected to change the magnitude of the ordered moment
by much, as J� is rather small �J� /J45� and also because
the chirality of the spin ordering is opposite in neighboring
layers such that the interlayer coupling energy in fact van-
ishes at the mean field level.

For Cs2CuBr2 �J /J�=2 and D=0� series expansions pre-
dict M �0.17.17 It would be interesting to make precise neu-
tron scattering measurements of the magnitude of the or-
dered spin moment in both Cs2CuCl4 and Cs2CuBr4 to
compare directly with the theoretical calculations presented
here.

V. MAGNON DISPERSION

A. Cs2CuCl4

In this section we present series expansion results for the
magnon dispersion for parameters relevant to Cs2CuCl4, dis-
cuss the effects of the DM interaction on this dispersion, and
compare it to the dispersion obtained from spin-wave theory
with 1/S corrections9,10 and to the experimental dispersion
obtained from inelastic neutron scattering with unpolarized
neutrons.3

1. Series dispersion

Series expansion results for the magnon dispersion along
the k-space path ABCOAD in Fig. 3 are shown in Fig. 4. The
dashed blue curve is for J /J�=2.92 and D=0, while the full
red curve includes the effect of a finite D /J�=0.16. We note
the following features.

�i� Along AB, which is perpendicular to the chain direc-
tion �b axis�, the excitation energy for D /J�=0.16 is signifi-

FIG. 2. The ground state energy per site, as a function of the
angle q between nearest-neighbor spins along J� bonds, obtained
from the series expansion around the Ising limit. �a� J /J�=2, rel-
evant for Cs2CuBr4. Here the left and right vertical dashed lines
denote the value of q obtained from dimer expansions �Eq. �16� in
Ref. 17�, and the classical ground state, respectively. �b� J /J�
=2.92, the ratio appropriate for Cs2CuCl4. The DM interaction
�D=0.16J�� lowers the ground state energy and shifts the ordering
angle from q�1.59 to q�1.64.

TABLE I. �Continued.�

�r ,m ,n� cr,m,n �r ,m ,n� cr,m,n �r ,m ,n� cr,m,n �r ,m ,n� cr,m,n

�4, 4, 0� −3.246293814�10−1 �8, 5, 3� 3.441529158�10−3 �6, 4, 6� −4.358158969�10−7 �8, 12, 4� −3.069805782�10−6

�5, 4, 0� −2.188669309�10−1 �4, 6, 2� −3.058604819�10−3 �7, 4, 6� 4.028642250�10−7 �8, 13, 3� −9.416441458�10−6

�6, 4, 0� −1.251987959�10−1 �5, 6, 2� −4.021118013�10−3 �8, 4, 6� 1.336492139�10−6 �8, 14, 2� −1.872276535�10−5

�7, 4, 0� −5.434016523�10−2 �6, 6, 2� −2.960843639�10−3 �6, 6, 6� −7.263598281�10−8 �8, 15, 1� −2.388666059�10−5

�8, 4, 0� −7.501154228�10−3 �7, 6, 2� −1.581263941�10−3 �7, 6, 6� 4.155864858�10−7 �8, 16, 0� −8.823605179�10−6

�3, 1, 3� 2.085142404�10−3 �8, 6, 2� −1.344189910�10−3 �8, 6, 6� 4.410976005�10−7
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cantly enhanced �by more than a factor of 2� over that for
D=0. The dispersion along AB is very flat in both cases.

�ii� The D�0 dispersion has a gap at k=Q while the
D=0 dispersion is gapless there. This follows from symme-
try arguments. For D=0 the model has full SU�2� spin rota-
tion symmetry. The helical order then leads to gapless exci-
tations �Goldstone modes� at k=0 and at the ordering vector
k=Q. The Goldstone mode at k=Q is associated with rota-
tions of the ordering plane of the spins, which is arbitrary
when D=0. The SU�2� symmetry is broken by the DM in-
teraction which fixes the ordering plane to coincide with the
plane of the triangular lattice. Thus rotations of the ordering
plane costs a finite energy for D�0, which creates a gap in
the magnon dispersion at k=Q.9,25–27 �It is important to note,
however, that to get gapless excitations at the appropriate k
vectors in the series calculations we need to bias the analysis
as discussed in some detail in Ref. 23; an unbiased analysis
always gives a gap.�

�iii� Near the point D the excitation energy for D /J�
=0.16 is significantly enhanced �by approximately a factor of
3� over the D=0 case.

�iv� Overall, the high-energy parts of the dispersion are
quite insensitive to the DM interaction, while the low-energy
parts are quite sensitive. A notable exception to the latter is
the region around k=0, since the Goldstone theorem dictates
gapless excitations at k=0 regardless of whether D is zero or
not �this is because the k=0 Goldstone mode is associated
with long-wavelength rotations of the spins within their or-
dering plane�.9,25–27

2. Comparison with spin-wave theory

Next we compare our theoretical dispersion for
D /J�=0.16 with that obtained from spin-wave theory with

TABLE II. Comparison of values for the incommensuration 	 and sublattice magnetization M for Cs2CuCl4 obtained from experiments
and various theoretical approaches. Unless noted otherwise, the values of the exchange interactions J and J� used in the theoretical
calculations are J=0.374 meV and J�=0.128 meV, corresponding to a ratio J /J�=2.92. D denotes the strength of the Dzyaloshinskii-Moriya
interaction.

	 M

D=0.16J� D=0 D=0.16J� D=0

Experiment 0.030�2� �Ref. 14� N/A N/A

Classical 0.0533 0.0547 0.5 0.5

+1/S correction 0.031 �Refs. 9 and 10� 0.022 �Ref. 10� �0.25 �Refs. 10 and 25� �0.07 �Refs. 10 and 16�
+1/S2 correction 0.011 �Ref. 10� �0.18 �Ref. 10� 0 �Ref. 10�
Series 0.022 0.006 0.213 �0.1

Variational RVBa 0.018 �Ref. 18� 0 �Ref. 12�
Large-N Sp�N� 0.037 �Ref. 4� 0.3625

aFor a ratio J� /J=0.33.

FIG. 3. �Color online� Reciprocal space diagram for the trian-
gular lattice. The path ABCOAD �A= �
 ,0�, B= �
 ,
 /�3�,
C= �2
 /3 ,2
 /�3�, O= �0,0�, and D= �2
 ,0�� and the three sets of
points denoted �1�–�3� are cuts along which magnon dispersions are
plotted in subsequent figures in the paper.

FIG. 4. �Color online� Magnon dispersion �k, as calculated from
series expansions, for parameters relevant to Cs2CuCl4, plotted
along the path ABCOAD shown in Fig. 3. When the DM interaction
is included the magnon energy is significantly enhanced along AB
and near the point D, and a gap opens up at the ordering wave
vector k=Q.
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1/S corrections �LSWT+1/S for short�.9,10 Both dispersions
are plotted in Fig. 5 �black dots and full line, respectively�.
We see that compared to the spin-wave prediction, the exci-
tation energy is increased in the b direction along which
neighboring spins are coupled by the strong J bonds, and
decreased in the perpendicular c direction. This corresponds
to an upwards renormalization of J and downwards renor-
malization of J� with respect to the spin-wave prediction,
which thus effectively makes the system appear more one-
dimensional. �The renormalizations of J and J� with respect
to linear spin-wave theory �LSWT� are even bigger,22 as the
LSWT+1/S dispersion itself is in turn characterized by an
upwards �downwards� renormalization of J �J�� compared to
LSWT.� The dependence of the magnon energy on the c
component of the wave vector is weak, giving the dispersion
a pronounced one dimensional character.

3. Comparison with experimental dispersion

In Fig. 5 we also show experimental results for the mag-
non energies obtained from inelastic neutron scattering.3 The
open symbols are data points corresponding to the positions
of the strongest peaks in the unpolarized neutron scattering
data. The red dashed line is a fit of these points to a disper-
sion given by

�k = ��J̃k − J̃Q���J̃Q+k + J̃Q−k�/2 − J̃Q� , �12�

where J̃k= J̃ cos kb+2J̃� cos�kb /2�cos��3kc /2�. The func-
tional form of Eq. �12� is identical to the expression from

linear spin-wave �LSWT� theory in the absence of the DM
interaction, but in Eq. �12� the bare exchange parameters J
and J� that would be used in LSWT have been replaced by

effective, renormalized parameters �J̃ and J̃�, respectively�
whose values are chosen to give the best fit to the experi-
mental data points. Hence the ratios of these renormalized
values to the bare values give a measure of the strength

of the quantum fluctuations in the system. In Fig. 5 J̃
=0.61�1� meV and J̃�=0.107�10� meV.3

Before comparing the theoretical and experimental
curves, however, we first discuss the interpretation of the
experimental data in some more detail, i.e., why for a given
k the location in energy of the strongest peak in the data can
in most cases be identified with the magnon energy �k. To
this end, we consider the differential cross section for inelas-
tic scattering of unpolarized neutrons, which is proportional
to28

sin2 �kSaa�k,�� + �1 + cos2 �k�Sbb�k,�� , �13�

where �k is the angle between the scattering wave vector k
and the axis �â� perpendicular to the ordering �bc� plane of
the spins, and Saa�k ,�� and Sbb�k ,�� are diagonal compo-
nents of the dynamical structure factor defined as �� ,
=a ,b ,c�

S��k,�� =
1

2

�

−�

�

dt�
R

�S��0,0�S�R,t��e−i�k·R−�t�.

�14�

Spin-wave theory predicts sharp one-magnon peaks in the
out-of-plane correlations Saa�k ,�� at �=�k �referred to as
the principal mode� and in the in-plane correlations Sbb�k ,��
at both �=�k+Q	�k

+ and �=�k−Q	�k
− �referred to as the

two secondary modes�, where �k is the magnon dispersion.
Hence if the spin-wave prediction for Eq. �13� were plotted
as a function of � for fixed k, three peaks would be ob-
served, at �=�k and �k

±. Although spin-wave theory does
not give the correct k dependence of the three modes, it is
expected that the three-peak structure it predicts �for a sys-
tem with helical magnetic order� is qualitatively correct. In
Fig. 6 we have plotted this structure for k varying along the
path in Fig. 3 �the energy of the modes was calculated from
spin-wave theory with 1/S corrections�.9

Most of the neutron scattering data were collected for k in
the bc plane �i.e., the plane of the helical order�, when �k
=
 /2, for which Eq. �13� becomes Saa�k ,��+Sbb�k ,��. For
example, at the zone boundary point B in Fig. 6 the spin-
wave calculation predicts that �k lies well below the two
other modes in energy. This principal mode is also predicted
to have the strongest intensity at B. Thus it appears quite safe
to assume that the lowest-energy, strongest-intensity peak in
the experimental spectrum at that k vector should be as-
signed to �k. At high energies the intensity of the out-of-
plane correlations Saa is also predicted to be bigger which
justifies an assignment of the location of the strongest peak
to �k at high energies. On the other hand, at low energies
close to k=Q, where the primary mode �k is expected to be
gapped and located inside the V-shape of the �k

− mode �see

FIG. 5. �Color online� Magnon dispersion for J /J�=2.92 and
D /J�=0.16 �solid points from series, black solid line from spin-
wave theory with 1/S correction� compared to experimental disper-
sion in Cs2CuCl4 �squares from Ref. 3, dashed line is experimental
parametrization� along the path ABCOAD in Fig. 3. Compared to
the dispersion from spin-wave theory, the series dispersion is en-
hanced along the J bonds and decreased perpendicular to them.
Note that theoretical and experimental dispersions cannot be di-
rectly compared near the ordering wave vector k=Q, as the gap in
�k expected at this wave vector cannot be resolved in the unpolar-
ized neutron scattering experiments �see text about how the experi-
mental dispersion is extracted�.
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Fig. 6�, the Saa part cannot be separately resolved. The ex-
perimental data indicate that there is no �or very little� over-
all gap at k=Q. This is what one would expect, because for a
spiral with finite DM interaction one of the in-plane modes
��k

−� would still be gapless.
For point B, �k is quite unambiguously determined, as

discussed above, and this point is sensitive to the presence of
the DM interaction; the theoretically calculated energy in-
creases with D. This makes the interchain dispersion in bet-
ter agreement with the experimental data when D is in-
cluded, although there is still a slight overestimate of 20%.
Along the AD direction the agreement between experiments
and series is essentially perfect, while along the chain direc-
tion OA, where the dispersion is maximal, the theory makes
a slight underestimate of 10%. The experimental disper-
sion relation was also measured along off-symmetry direc-
tions in the 2D Brillouin zone and Fig. 7 shows that the
series results �black circles� compare very well with experi-
mental data �red squares� for those directions too.

B. Cs2CuBr4

In Fig. 8 we show series expansion results �black sym-
bols� for the magnon dispersion for J /J�=2, the ratio appro-
priate for Cs2CuBr4, along the k-space path ABCOAD in Fig.
3. The dispersion obtained from linear spin-wave theory, Eq.
�12� is also shown for comparison. We note the following
features: �i� With respect to LSWT the series dispersion is
renormalized upward in the direction parallel to the chains
�i.e., in the direction along which the exchange constant is
strongest� and downward in the perpendicular direction. A
similar kind of upward renormalization occurs both for the
square lattice �J=0� and decoupled chains �J�=0�. �ii� Along
the AB direction perpendicular to the chains, the series dis-
persion has flattened and the excitation energy has decreased
significantly compared to the case J=J� case �Fig. 1 in Ref.
22�. Features �i� and �ii� persist as J /J� is increased further to

3, as seen in the D=0 curve in Fig. 4, which except for the
more pronounced flatness along AB looks qualitatively very
similar to the J /J�=2 dispersion in Fig. 8.

VI. CONCLUSIONS

In this paper we have presented series expansion calcula-
tions for various ground state properties �ground state en-

FIG. 6. �Color online� The magnon modes �k �principal mode�
and �k±Q	�k

± �secondary modes�, as calculated from spin-wave
theory with 1/S corrections,9 for Cs2CuCl4 �J /J�=2.92 and
D /J�=0.16�, plotted along the path ABCOAD shown in Fig. 3.

FIG. 7. �Color online� Comparison of the experimentally mea-
sured dispersion relation in Cs2CuCl4 �red squares� and series ex-
pansion results for J=0.385 meV, J /J�=2.92, and D /J�=0.16
�black circles�, along paths �1�, �2�, and �3� in Fig. 3. Calculations
were made at the same �kx ,ky� where experimental dispersion
points were measured.

FIG. 8. �Color online� Magnon dispersion for Cs2CuBr4

�J=2J� and D=0�, calculated from series expansions. Compared to
the dispersion from linear spin-wave theory �red dashed line, Eq.
�12�� the series dispersion is enhanced along the J bonds and de-
creased perpendicular to them. The dispersion looks qualitatively
rather similar to the case J /J�=2.92, D=0 in Fig. 4 although in that
case the energy is practically flat along AB �i.e., perpendicular to the
chains� while here the energy varies somewhat along AB, giving a
less one-dimensional dispersion, as expected. The horizontal black
dashed line is at � /J=
 /2 which is the maximum energy in the
one-dimensional limit J /J�=�.
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ergy, ordering wave vector, and sublattice magnetization�,
and for the magnon dispersion, in the helically ordered state
of spin-1 /2 frustrated antiferromagnets on an anisotropic tri-
angular lattice. For the parameter values considered here the
model Hamiltonians we have studied are expected to give a
good description of the magnetic properties of Cs2CuBr4 and
Cs2CuCl4.

For parameters appropriate for Cs2CuBr4 �J /J�=2� we
have made specific predictions for large and nonuniform
renormalizations of the dispersion relation compared to the
classical �linear spin-wave theory� result �see Fig. 8�. There
is an upward renormalization along the chains and a down-
ward renormalization along the interchain direction. These
predictions for Cs2CuBr4 should be testable by future neu-
tron scattering experiments.

For Cs2CuCl4 we have compared our theoretical predic-
tions for the dispersion with experimental results from neu-
tron scattering experiments and with spin-wave theory that
includes 1/S corrections. The calculated magnon dispersion
shows large quantum renormalizations compared to the clas-
sical result; as for Cs2CuBr4 the renormalization is upward
along the chain direction and downward along the interchain
direction. Thus quantum fluctuations make the dispersion
look more one-dimensional. These predictions from series
are in good quantitative agreement with the experimental
observations. In contrast, spin-wave theory with 1/S correc-
tions predicts considerably smaller renormalizations and thus
underestimates the effects of quantum fluctuations on the dis-
persion.

The agreement between theory and experiment improves
further when the Dzyaloshinskii-Moriya �DM� interaction is
taken into account. The DM interaction is found to signifi-
cantly increase the incommensuration of the ordering wave
vector with respect to the antiferromagnetic wave vector in

the chain �b̂� direction. Another important consequence of
the DM interaction is that it opens up a gap in the magnon
dispersion at the ordering wave vector. We have made spe-
cific predictions for the size of this energy gap at the order-

ing wave vector to longitudinally polarized excitations
�along the direction normal to the spiral plane� which could
be tested by future high-resolution polarized neutron scatter-
ing experiments.

Another very interesting issue, at least from a theoretical
point of view, is the role of the DM interaction in Cs2CuCl4
in stabilizing a ground state with helical magnetic order. We
find here that inclusion of the DM interaction strengthens the
helical order. In fact, several recent papers10–13 have pre-
dicted that in the absence of the DM interaction the ground
state is not helically ordered. The proposed ground states for
D=0 include a spin liquid �“algebraic vortex liquid”�11 and a
state with collinear antiferromagnetic order.13 The latter state
could be studied using series expansions; it would be inter-
esting to compare its energy with the helically ordered phase.
We also note that a dimerized state �with “diagonal” dimer-
ization; see Fig. 4�a� in Ref. 17� that we have studied with
series expansions is extremely close in energy to the heli-
cally ordered state �for a large regime of J /J� including
J /J��3 we find that the energies of the two phases lie vir-
tually on top of each other�.
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