35 research outputs found

    A repeat cross-sectional study examining the equitable impact of nutritional standards for school lunches in England in 2008 on the diets of 4-7y olds across the socio-economic spectrum

    Get PDF
    BACKGROUND: The 2008 nutritional standards for primary school lunch in England improved nutritional content. The impact on socio-economic inequalities is unknown. We examine the impact of the nutritional standards on children’s nutrient intake at lunchtime and in total diet by level of deprivation. METHODS: We conducted cross-sectional studies in 12 English primary schools before and after legislation. Dietary intake was recorded for 4-7y olds using a validated, prospective four-day food diary. Socio-economic status was estimated using the Index of Multiple Deprivation; three groups of approximately equal sizes were created. Linear, mixed-effect models explored the effect of year, lunch type (school or home-packed lunch), level of deprivation and the interaction(s) between these factors on children’s diets. RESULTS: 368 and 624 children participated in 2003–4 and 2008–9 respectively. At lunchtime, between 2003–4 and 2008–9, the increase in non-starch polysaccharide (NSP) intake was larger in the least compared to the most deprived group (difference in mean change 0.8 mg; 95% CI 0.4, 1.3). There were similar differences in mean changes for iron (0.3 mg; 0.2, 0.4) and zinc (0.3 mg; 0.1, 0.5). In total diet, differential effects were observed for NSP, iron and zinc; we found no evidence these changes were associated with lunch type. Lunch type was associated with changes in per cent energy from non-milk-extrinsic sugars (NMES) and vitamin C. Per cent energy from NMES was lower and vitamin C intake higher in school lunches in 2008–9 compared with 2003–4. The corresponding differences in home-packed lunches were not as marked and there were subtle but statistically significant effects of the level of deprivation. CONCLUSIONS: By 2008–9, NMES at lunchtime and in total diet was lower for children consuming a school lunch; this change was equitable across the deprivation groups. Vitamin C intake increased more for children in the most deprived group, narrowing the socio-economic inequality. A range of significant differential effects of the nutritional standards were observed and important socio-economic inequalities in dietary intake remain. Additional interventions to promote equitable nutrition in children are needed to support legislative measures and maximise their impact

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Brf1 loss and not overexpression disrupts tissues homeostasis in the intestine, liver and pancreas

    Get PDF
    RNA polymerase III (Pol-III) transcribes tRNAs and other small RNAs essential for protein synthesis and cell growth. Pol-III is deregulated during carcinogenesis; however, its role in vivo has not been studied. To address this issue, we manipulated levels of Brf1, a Pol-III transcription factor that is essential for recruitment of Pol-III holoenzyme at tRNA genes in vivo. Knockout of Brf1 led to embryonic lethality at blastocyst stage. In contrast, heterozygous Brf1 mice were viable, fertile and of a normal size. Conditional deletion of Brf1 in gastrointestinal epithelial tissues, intestine, liver and pancreas, was incompatible with organ homeostasis. Deletion of Brf1 in adult intestine and liver induced apoptosis. However, Brf1 heterozygosity neither had gross effects in these epithelia nor did it modify tumorigenesis in the intestine or pancreas. Overexpression of BRF1 rescued the phenotypes of Brf1 deletion in intestine and liver but was unable to initiate tumorigenesis. Thus, Brf1 and Pol-III activity are absolutely essential for normal homeostasis during development and in adult epithelia. However, Brf1 overexpression or heterozygosity are unable to modify tumorigenesis, suggesting a permissive, but not driving role for Brf1 in the development of epithelial cancers of the pancreas and gut
    corecore