48 research outputs found

    Clomiphene, Metformin, or Both for Infertility in the Polycystic Ovary Syndrome

    Get PDF
    Background The polycystic ovary syndrome is a common cause of infertility. Clomiphene and insulin sensitizers are used alone and in combination to induce ovulation, but it is unknown whether one approach is superior. Methods We randomly assigned 626 infertile women with the polycystic ovary syndrome to receive clomiphene citrate plus placebo, extended-release metformin plus placebo, or a combination of metformin and clomiphene for up to 6 months. Medication was discontinued when pregnancy was confirmed, and subjects were followed until delivery. Results The live-birth rate was 22.5% (47 of 209 subjects) in the clomiphene group, 7.2% (15 of 208) in the metformin group, and 26.8% (56 of 209) in the combinationtherapy group (P\u3c0.001 for metformin vs. both clomiphene and combination therapy; P=0.31 for clomiphene vs. combination therapy). Among pregnancies, the rate of multiple pregnancy was 6.0% in the clomiphene group, 0% in the metformin group, and 3.1% in the combination-therapy group. The rates of first-trimester pregnancy loss did not differ significantly among the groups. However, the conception rate among subjects who ovulated was significantly lower in the metformin group (21.7%) than in either the clomiphene group (39.5%, P=0.002) or the combinationtherapy group (46.0%, P\u3c0.001). With the exception of pregnancy complications, adverse-event rates were similar in all groups, though gastrointestinal side effects were more frequent, and vasomotor and ovulatory symptoms less frequent, in the metformin group than in the clomiphene group. Conclusions Clomiphene is superior to metformin in achieving live birth in infertile women with the polycystic ovary syndrome, although multiple birth is a complication. (ClinicalTrials.gov number, NCT00068861.

    Sex difference and intra-operative tidal volume: Insights from the LAS VEGAS study

    Get PDF
    BACKGROUND: One key element of lung-protective ventilation is the use of a low tidal volume (VT). A sex difference in use of low tidal volume ventilation (LTVV) has been described in critically ill ICU patients.OBJECTIVES: The aim of this study was to determine whether a sex difference in use of LTVV also exists in operating room patients, and if present what factors drive this difference.DESIGN, PATIENTS AND SETTING: This is a posthoc analysis of LAS VEGAS, a 1-week worldwide observational study in adults requiring intra-operative ventilation during general anaesthesia for surgery in 146 hospitals in 29 countries.MAIN OUTCOME MEASURES: Women and men were compared with respect to use of LTVV, defined as VT of 8 ml kg-1 or less predicted bodyweight (PBW). A VT was deemed 'default' if the set VT was a round number. A mediation analysis assessed which factors may explain the sex difference in use of LTVV during intra-operative ventilation.RESULTS: This analysis includes 9864 patients, of whom 5425 (55%) were women. A default VT was often set, both in women and men; mode VT was 500 ml. Median [IQR] VT was higher in women than in men (8.6 [7.7 to 9.6] vs. 7.6 [6.8 to 8.4] ml kg-1 PBW, P < 0.001). Compared with men, women were twice as likely not to receive LTVV [68.8 vs. 36.0%; relative risk ratio 2.1 (95% CI 1.9 to 2.1), P < 0.001]. In the mediation analysis, patients' height and actual body weight (ABW) explained 81 and 18% of the sex difference in use of LTVV, respectively; it was not explained by the use of a default VT.CONCLUSION: In this worldwide cohort of patients receiving intra-operative ventilation during general anaesthesia for surgery, women received a higher VT than men during intra-operative ventilation. The risk for a female not to receive LTVV during surgery was double that of males. Height and ABW were the two mediators of the sex difference in use of LTVV.TRIAL REGISTRATION: The study was registered at Clinicaltrials.gov, NCT01601223

    Niche Relationships of the Anisoptera Nymphs of Lake Isaqueen

    No full text

    Can north american fish passage tools work for South american migratory fishes?

    No full text
    In North America, the Numerical Fish Surrogate (NFS) is used to design fish bypass systems for emigrating juvenile salmon as they migrate from hatchery outfalls and rearing habitats to adult habitat in the oceans. The NFS is constructed of three linked modules: 1) a computational fluid dynamics model describes the complex flow fields upstream of dams at a scale sufficiently resolved to analyze, understand and forecast fish movement, 2) a particle tracking model interpolates hydraulic information from the fixed nodes of the computational fluid model mesh to multiple locations relevant to migrating fish, and 3) a behavior model simulates the cognition and behavior of individual fish in response to the fluid dynamics predicted by the computational fluid dynamics model. These three modules together create a virtual reality where virtual fish exhibit realistic dam approach behaviors and can be counted at dam exits in ways similar to the real world. Once calibrated and validated with measured fish movement and passage data, the NFS can accurately predict fish passage proportions with sufficient precision to allow engineers to select one optimum alternative from among many competing structural or operational bypass alternatives. Although South American fish species are different from North American species, it is likely that the basic computational architecture and numerical methods of the NFS can be used for fish conservation in South America. Consequently, the extensive investment made in the creation of the NFS need not be duplicated in South America. However, its use in South America will require that the behavioral response of the continent's unique fishes to hydrodynamic cues must be described, codified and tested before the NFS can be used to conserve fishes by helping design efficient South American bypass systems. To this end, we identify studies that could be used to describe the movement behavior of South American fishes of sufficient detail that they could be used to develop, calibrate and validate a South American version of the NFS

    A Starling-like total work controller for rotary blood pumps: an in vitro evaluation

    No full text
    Due to improved durability and survival rates, rotary blood pumps (RBPs) are the preferred left ventricular assist device when compared to volume displacement pumps. However, when operated at constant speed, RBPs lack a volume balancing mechanism which may result in left ventricular suction and suboptimal ventricular unloading. Starling-like controllers have previously been developed to balance circulatory volumes; however, they do not consider ventricular workload as a feedback and may have limited sensitivity to adjust RBP workload when ventricular function deteriorates or improves. To address this, we aimed to develop a Starling-like total work controller (SL-TWC) that matched the energy output of a healthy heart by adjusting RBP hydraulic work based on measured left ventricular stroke work and ventricular preload. In a mock circulatory loop, the SL-TWC was evaluated using a HeartWare HVAD in a range of simulated patient conditions. These conditions included changes in systemic hypertension and hypotension, pulmonary hypertension, blood circulatory volume, exercise, and improvement and deterioration of ventricular function by increasing and decreasing ventricular contractility. The SL-TWC was compared to constant speed control where RBP speed was set to restore cardiac output to 5.0 L/min at rest. Left ventricular suction occurred with constant speed control during pulmonary hypertension but was prevented with the SL-TWC. During simulated exercise, the SL-TWC demonstrated reduced LVSW (0.51 J) and greater RBP flow (9.2 L/min) compared to constant speed control (LVSW: 0.74 J and RBP flow: 6.4 L/min). In instances of increased ventricular contractility, the SL-TWC reduced RBP hydraulic work while maintaining cardiac output similar to the rest condition. In comparison, constant speed overworked and increased cardiac output. The SL-TWC balanced circulatory volumes by mimicking the Starling mechanism, while also considering changes in ventricular workload. Compared to constant speed control, the SL-TWC may reduce complications associated with volume imbalances, adapt to changes in ventricular function and improve patient quality of life
    corecore