2,368 research outputs found

    ADA Compliance in Online Courses: Free Tools and Resources for Creating an Inclusive Environment for Both Students and Instructors

    Get PDF
    Online courses must be accessible to students with disabilities, yet instructor training in accessible design is often an afterthought, leading to legal vulnerability and a breakdown in the learning partnership between student and instructor. Based on feedback from faculty members who shared their familiarity with expectations from the American Disabilities Association (ADA) and Section 508 of the Workforce Rehabilitation Act, as well as challenges and perceived barriers, this session demonstrated free tools, practical suggestions, and important design tips for bringing all courses into compliance., even for those instructors with less than sophisticated technological expertise

    High School Science Teachers and Forestry Education: How are they Connected?

    Get PDF
    A quantitative study of high school science teachers in the five state Southern Piedmont region of the United States investigating their attitudes toward and understanding of forestry as well as the extent to which they are teaching forestry concepts was conducted. Specific factors that were addressed include teachers’ attitudes toward the impacts of forest management, specific forest management practices, forest management goals, the forestry profession, and forestry education. The primary method of data collection for this study was a web-based survey and data analysis included calculating descriptive statistics, performing exploratory factor analysis and producing several regression models. Very few similar studies have previously occurred and even fewer in the critically important southeastern U.S. forestry region. The study will provide insight into the way teachers think as well as levels of high school student exposure to forestry concepts. Results may also help to clarify enrollment trends in in college forestry and natural resource programs. Results will be discussed in the context of variation in attitudinal, knowledge-based, education, and demographic variables

    An Historical Overview and Update of Wolf-Moose Interactions in Northeastern Minnesota

    Get PDF
    Wolf (Canis lupus) and moose (Alces americanus) populations in northeastern Minnesota, USA, have fluctuated for decades and, based on helicopter counts, moose numbers declined to a new low from 2006 to about 2012. Other steep declines were found in 1991 and 1998 during periods when moose counts were done with fixed-wing aircraft; these declines also appeared to be real. Winter wolf numbers, monitored in part of the moose range, had been increasing since about 2002 to the highest population in decades in 2009. However, from 2009 to 2016, wolves decreased precipitously, and the moose- population decline leveled off from 2012 to 2017. Calf:population ratios from 1985 to 1997 and from 2005 to 2016 were inversely related to wolf numbers in the wolf-study area the previous winter both as wolves increased and decreased in abundance. Similarly, log annual growth rates of moose numbers were negatively correlated with counts of wolves in the prior year. Other factors such as nutrition and parasites, and possibly climate change, likely have been involved in the recent moose decline. However, wolves, as in other areas, appear to have contributed to the decline in the northeastern Minnesota moose population at least in part through predation on calves, supporting earlier reports

    Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots

    Get PDF
    The central-spin problem, in which an electron spin interacts with a nuclear spin bath, is a widely studied model of quantum decoherence. Dynamic nuclear polarization (DNP) occurs in central spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in spin-based quantum information processing for coherent electron and nuclear spin control. However, the mechanisms limiting DNP remain only partially understood. Here, we show that spin-orbit coupling quenches DNP in a GaAs double quantum dot, even though spin-orbit coupling in GaAs is weak. Using Landau-Zener sweeps, we measure the dependence of the electron spin-flip probability on the strength and direction of in-plane magnetic field, allowing us to distinguish effects of the spin-orbit and hyperfine interactions. To confirm our interpretation, we measure high-bandwidth correlations in the electron spin-flip probability and attain results consistent with a significant spin-orbit contribution. We observe that DNP is quenched when the spin-orbit component exceeds the hyperfine, in agreement with a theoretical model. Our results shed new light on the surprising competition between the spin-orbit and hyperfine interactions in central-spin systems.Comment: 5+12 pages, 9 figure

    Visualization of Recombinant DNA and Protein Complexes Using Atomic Force Microscopy

    Get PDF
    Atomic force microscopy (AFM) allows for the visualizing of individual proteins, DNA molecules, protein-protein complexes, and DNA-protein complexes. On the end of the microscope's cantilever is a nano-scale probe, which traverses image areas ranging from nanometers to micrometers, measuring the elevation of macromolecules resting on the substrate surface at any given point. Electrostatic forces cause proteins, lipids, and nucleic acids to loosely attach to the substrate in random orientations and permit imaging. The generated data resemble a topographical map, where the macromolecules resolve as three-dimensional particles of discrete sizes (Figure 1) 1,2. Tapping mode AFM involves the repeated oscillation of the cantilever, which permits imaging of relatively soft biomaterials such as DNA and proteins. One of the notable benefits of AFM over other nanoscale microscopy techniques is its relative adaptability to visualize individual proteins and macromolecular complexes in aqueous buffers, including near-physiologic buffered conditions, in real-time, and without staining or coating the sample to be imaged

    Quantum Mutual Information Capacity for High Dimensional Entangled States

    Get PDF
    High dimensional Hilbert spaces used for quantum communication channels offer the possibility of large data transmission capabilities. We propose a method of characterizing the channel capacity of an entangled photonic state in high dimensional position and momentum bases. We use this method to measure the channel capacity of a parametric downconversion state, achieving a channel capacity over 7 bits/photon in either the position or momentum basis, by measuring in up to 576 dimensions per detector. The channel violated an entropic separability bound, suggesting the performance cannot be replicated classically.Comment: 5 pages, 2 figure
    • …
    corecore