3,073 research outputs found

    The 21-SPONGE HI Absorption Survey I: Techniques and Initial Results

    Full text link
    We present methods and results from "21-cm Spectral Line Observations of Neutral Gas with the EVLA" (21-SPONGE), a large survey for Galactic neutral hydrogen (HI) absorption with the Karl G. Jansky Very Large Array (VLA). With the upgraded capabilities of the VLA, we reach median root-mean-square (RMS) noise in optical depth of στ=9×10−4\sigma_{\tau}=9\times 10^{-4} per 0.42 km s−10.42\rm\,km\,s^{-1} channel for the 31 sources presented here. Upon completion, 21-SPONGE will be the largest HI absorption survey with this high sensitivity. We discuss the observations and data reduction strategies, as well as line fitting techniques. We prove that the VLA bandpass is stable enough to detect broad, shallow lines associated with warm HI, and show that bandpass observations can be combined in time to reduce spectral noise. In combination with matching HI emission profiles from the Arecibo Observatory (∼3.5′\sim3.5' angular resolution), we estimate excitation (or spin) temperatures (Ts\rm T_s) and column densities for Gaussian components fitted to sightlines along which we detect HI absorption (30/31). We measure temperatures up to Ts∼1500 K\rm T_s\sim1500\rm\,K for individual lines, showing that we can probe the thermally unstable interstellar medium (ISM) directly. However, we detect fewer of these thermally unstable components than expected from previous observational studies. We probe a wide range in column density between ∼1016\sim10^{16} and >1021 cm−2>10^{21}\rm\,cm^{-2} for individual HI clouds. In addition, we reproduce the trend between cold gas fraction and average Ts\rm T_s found by synthetic observations of a hydrodynamic ISM simulation by Kim et al. (2014). Finally, we investigate methods for estimating HI Ts\rm T_s and discuss their biases.Comment: Accepted for publication in ApJ; 24 pages, 14 figure

    First Detection of HCO+^+ Absorption in the Magellanic System

    Full text link
    We present the first detection of HCO+^+ absorption in the Magellanic System. Using the Australia Telescope Compact Array (ATCA), we observed 9 extragalactic radio continuum sources behind the Magellanic System and detected HCO+^+ absorption towards one source located behind the leading edge of the Magellanic Bridge. The detection is located at LSR velocity of v=214.0±0.4 km s−1v=214.0 \pm 0.4\rm\,km\,s^{-1}, with a full width at half maximum of Δv=4.5±1.0 km s−1\Delta v=4.5\pm 1.0\rm\,km\,s^{-1} and optical depth of τ(HCO+)=0.10±0.02\tau(\rm HCO^+)=0.10\pm 0.02. Although there is abundant neutral hydrogen (HI) surrounding the sightline in position-velocity space, at the exact location of the absorber the HI column density is low, <1020 cm−2<10^{20}\rm\,cm^{-2}, and there is little evidence for dust or CO emission from Planck observations. While the origin and survival of molecules in such a diffuse environment remains unclear, dynamical events such as HI flows and cloud collisions in this interacting system likely play an important role.Comment: Accepted for publication in ApJ. 6 pages, 2 figures, 2 table

    Learning Colour Representations of Search Queries

    Full text link
    Image search engines rely on appropriately designed ranking features that capture various aspects of the content semantics as well as the historic popularity. In this work, we consider the role of colour in this relevance matching process. Our work is motivated by the observation that a significant fraction of user queries have an inherent colour associated with them. While some queries contain explicit colour mentions (such as 'black car' and 'yellow daisies'), other queries have implicit notions of colour (such as 'sky' and 'grass'). Furthermore, grounding queries in colour is not a mapping to a single colour, but a distribution in colour space. For instance, a search for 'trees' tends to have a bimodal distribution around the colours green and brown. We leverage historical clickthrough data to produce a colour representation for search queries and propose a recurrent neural network architecture to encode unseen queries into colour space. We also show how this embedding can be learnt alongside a cross-modal relevance ranker from impression logs where a subset of the result images were clicked. We demonstrate that the use of a query-image colour distance feature leads to an improvement in the ranker performance as measured by users' preferences of clicked versus skipped images.Comment: Accepted as a full paper at SIGIR 202

    Cuprizone demyelination of the corpus callosum in mice correlates with altered social interaction and impaired bilateral sensorimotor coordination

    Get PDF
    For studies of remyelination in demyelinating diseases, the cuprizone model of CC (corpus callosum) demyelination has experimental advantages that include overall size, proximity to neural stem cells of the subventricular zone, and correlation with a lesion predilection site in multiple sclerosis. In addition, cuprizone treatment can be ended to allow more direct analysis of remyelination than with viral or autoimmune models. However, CC demyelination lacks a useful functional correlate in rodents for longitudinal analysis throughout the course of demyelination and remyelination. In the present study, we tested two distinct behavioural measurements in mice fed 0.2% cuprizone. Running on a ‘complex' wheel with varied rung intervals requires integration between cerebral hemispheres for rapid bilateral sensorimotor coordination. Maximum running velocity on the ‘complex' wheel decreased during acute (6 week) and chronic (12 week) cuprizone demyelination. Running velocity on the complex wheel distinguished treated (for 6 weeks) from non-treated mice, even after a 6-week recovery period for spontaneous remyelination. A second behavioural assessment was a resident–intruder test of social interaction. The frequency of interactive behaviours increased among resident mice after acute or chronic demyelination. Differences in both sensorimotor coordination and social interaction correlated with demonstrated CC demyelination. The wheel assay is applicable for longitudinal studies. The resident–intruder assay provides a complementary assessment of a distinct modality at a specific time point. These behavioural measurements are sufficiently robust for small cohorts as a non-invasive assessment of demyelination to facilitate analysis of subsequent remyelination. These measurements may also identify CC involvement in other mouse models of central nervous system injuries and disorders

    Clusterin is an extracellular chaperone that specifically interacts with slowly aggregating proteins on their off-folding pathway

    Get PDF
    Clusterin is an extracellular mammalian chaperone protein which inhibits stress-induced precipitation of many different proteins. The conformational state(s) of proteins that interact with clusterin and the stage(s) along the folding and off-folding (precipitation-bound) pathways where this interaction occurs were previously unknown. We investigated this by examining the interactions of clusterin with different structural forms of α-lactalbumin, γ-crystallin and lysozyme. When assessed by ELISA and native gel electrophoresis, clusterin did not bind to various stable, intermediately folded states of α-lactalbumin nor to the native form of this protein, but did bind to and inhibit the slow precipitation of reduced α-lactalbumin. Reduction-induced changes in the conformation of α-lactalbumin, in the absence and presence of clusterin, were monitored by real-time 1H NMR spectroscopy. In the absence of clusterin, an intermediately folded form of α-lactalbumin, with some secondary structure but lacking tertiary structure, aggregated and precipitated. In the presence of clusterin, this form of α-lactalbumin was stabilised in a non-aggregated state, possibly via transient interactions with clusterin prior to complexation. Additional experiments demonstrated that clusterin potently inhibited the slow precipitation, but did not inhibit the rapid precipitation, of lysozyme and γ-crystallin induced by different stresses. These results suggest that clusterin interacts with and stabilises slowly aggregating proteins but is unable to stabilise rapidly aggregating proteins. Collectively, our results suggest that during its chaperone action, clusterin preferentially recognises partly folded protein intermediates that are slowly aggregating whilst venturing along their irreversible off-folding pathway towards a precipitated protein

    Constraints on decay plus oscillation solutions of the solar neutrino problem

    Get PDF
    We examine the constraints on non-radiative decay of neutrinos from the observations of solar neutrino experiments. The standard oscillation hypothesis among three neutrinos solves the solar and atmospheric neutrino problems. Decay of a massive neutrino mixed with the electron neutrino results in the depletion of the solar neutrino flux. We introduce neutrino decay in the oscillation hypothesis and demand that decay does not spoil the successful explanation of solar and atmospheric observations. We obtain a lower bound on the ratio of the lifetime over the mass of ν2\nu_2, (\tau_2/m_2) > 22.7 (\srm/\MeV) for the MSW solution of the solar neutrino problem and (\tau_2/m_2) > 27.8 (\srm/\MeV) for the VO solution (at 99% C.L.).Comment: 8 pages latex file with 4 figure

    The Atacama Cosmology Telescope: The LABOCA/ACT Survey of Clusters at All Redshifts

    Full text link
    We present a multi-wavelength analysis of eleven Sunyaev Zel'dovich effect (SZE)-selected galaxy clusters (ten with new data) from the Atacama Cosmology Telescope (ACT) southern survey. We have obtained new imaging from the Large APEX Bolometer Camera (345GHz; LABOCA) on the Atacama Pathfinder EXperiment (APEX) telescope, the Australia Telescope Compact Array (2.1GHz; ATCA), and the Spectral and Photometric Imaging Receiver (250, 350, and 500 μm500\,\rm\mu m; SPIRE) on the Herschel Space Observatory. Spatially-resolved 345GHz SZE increments with integrated S/N > 5 are found in six clusters. We compute 2.1GHz number counts as a function of cluster-centric radius and find significant enhancements in the counts of bright sources at projected radii θ<θ2500\theta < \theta_{2500}. By extrapolating in frequency, we predict that the combined signals from 2.1GHz-selected radio sources and 345GHz-selected SMGs contaminate the 148GHz SZE decrement signal by ~5% and the 345GHz SZE increment by ~18%. After removing radio source and SMG emission from the SZE signals, we use ACT, LABOCA, and (in some cases) new Herschel SPIRE imaging to place constraints on the clusters' peculiar velocities. The sample's average peculiar velocity relative to the cosmic microwave background is 153±383 km s−1153\pm 383\,\rm km\,s^{-1}.Comment: 19 pages, 11 figures, Accepted for Publication in The Astrophysical Journa

    Do solar neutrinos decay?

    Full text link
    Despite the fact that the solar neutrino flux is now well-understood in the context of matter-affected neutrino mixing, we find that it is not yet possible to set a strong and model-independent bound on solar neutrino decays. If neutrinos decay into truly invisible particles, the Earth-Sun baseline defines a lifetime limit of \tau/m \agt 10^{-4} s/eV. However, there are many possibilities which must be excluded before such a bound can be established. There is an obvious degeneracy between the neutrino lifetime and the mixing parameters. More generally, one must also allow the possibility of active daughter neutrinos and/or antineutrinos, which may partially conceal the characteristic features of decay. Many of the most exotic possibilities that presently complicate the extraction of a decay bound will be removed if the KamLAND reactor antineutrino experiment confirms the large-mixing angle solution to the solar neutrino problem and measures the mixing parameters precisely. Better experimental and theoretical constraints on the 8^8B neutrino flux will also play a key role, as will tighter bounds on absolute neutrino masses. Though the lifetime limit set by the solar flux is weak, it is still the strongest direct limit on non-radiative neutrino decay. Even so, there is no guarantee (by about eight orders of magnitude) that neutrinos from astrophysical sources such as a Galactic supernova or distant Active Galactic Nuclei will not decay.Comment: Very minor corrections, corresponds to published versio
    • …
    corecore