43,160 research outputs found

    Revenue Estimates for Eliminating Sales Tax Exemptions and Adding Services to the Sales Tax Base

    Get PDF
    This report provides revenue estimates for alternative combinations of eliminating sales tax exemptions and adding services to the sales tax base. FRC Report 17

    Selected Fiscal and Economic Implications of Aging

    Get PDF
    This report considers pressures and potential benefits of an increased elderly population in Georgia. FRC Report 16

    An sS Model with Adverse Selection

    Get PDF
    We present a model of the market for used cars in which agents face a fixed cost of adjustment, the magnitude of which depend on the degree of adverse selection in the secondary market. We find that, unlike typical models, the sS bands in our model contract as the variance of the shock process increases. We also analyze a dynamic version of the model in which agents are allowed to make decisions that are conditional of the age of a used car. We find that, as a car ages, the lemons problem tends to decline in importance, and the sS bands contract.

    Using multiple reference ontologies: Managing composite annotations

    Get PDF
    There are a growing number of reference ontologies available across a variety of biomedical domains and current research focuses on their construction, organization and use. An important use case for these ontologies is annotation—where users create metadata that access concepts and terms in reference ontologies. We draw on our experience in physiological modeling to present a compelling use case that demonstrates the potential complexity of such annotations. In the domain of physiological biosimulation, we argue that most annotations require the use of multiple reference ontologies. We suggest that these “composite” annotations should be retained as a repository of knowledge about post-coordination that promotes sharing and interoperation across biosimulation models

    Multiphoton localization and propagating quantum gap solitons in a frequency gap medium

    Get PDF
    The many-particle spectrum of an isotropic frequency gap medium doped with impurity resonance atoms is studied using the Bethe ansatz technique. The spectrum is shown to contain pairs of quantum correlated ``gap excitations'' and their heavy bound complexes (``gap solitons''), enabling the propagation of quantum information within the classically forbidden gap. In addition, multiparticle localization of the radiation and the medium polarization occurs when such a gap soliton is pinned to the impurity atom.Comment: 8 pages, RevTEX, to appear in Phys. Rev. Let

    Proof of Jacobi identity in generalized quantum dynamics

    Full text link
    We prove that the Jacobi identity for the generalized Poisson bracket is satisfied in the generalization of Heisenberg picture quantum mechanics recently proposed by one of us (SLA). The identity holds for any combination of fermionic and bosonic fields, and requires no assumptions about their mutual commutativity.Comment: 9 pages, plain tex file, IASSNS-HEP-93/4

    Braggoriton--Excitation in Photonic Crystal Infiltrated with Polarizable Medium

    Full text link
    Light propagation in a photonic crystal infiltrated with polarizable molecules is considered. We demonstrate that the interplay between the spatial dispersion caused by Bragg diffraction and polaritonic frequency dispersion gives rise to novel propagating excitations, or braggoritons, with intragap frequencies. We derive the braggoriton dispersion relation and show that it is governed by two parameters, namely, the strength of light-matter interaction and detuning between the Bragg frequency and that of the infiltrated molecules. We also study defect-induced states when the photonic band gap is divided into two subgaps by the braggoritonic branches and find that each defect creates two intragap localized states inside each subgap.Comment: LaTeX, 8 pages, 5 figure

    Development of high resolution simulations of the atmospheric environment using the MASS model

    Get PDF
    Numerical simulations were performed with a very high resolution (7.25 km) version of the MASS model (Version 4.0) in an effort to diagnose the vertical wind shear and static stability structure during the Shuttle Challenger disaster which occurred on 28 January 1986. These meso-beta scale simulations reveal that the strongest vertical wind shears were concentrated in the 200 to 150 mb layer at 1630 GMT, i.e., at about the time of the disaster. These simulated vertical shears were the result of two primary dynamical processes. The juxtaposition of both of these processes produced a shallow (30 mb deep) region of strong vertical wind shear, and hence, low Richardson number values during the launch time period. Comparisons with the Cape Canaveral (XMR) rawinsonde indicates that the high resolution MASS 4.0 simulation more closely emulated nature than did previous simulations of the same event with the GMASS model

    Renormalized broken-symmetry Schwinger-Dyson equations and the 2PI-1/N expansion for the O(N) model

    Full text link
    We derive the renormalized Schwinger-Dyson equations for the one- and two-point functions in the auxiliary field formulation of λϕ4\lambda \phi^4 field theory to order 1/N in the 2PI-1/N expansion. We show that the renormalization of the broken-symmetry theory depends only on the counter terms of the symmetric theory with ϕ=0\phi = 0. We find that the 2PI-1/N expansion violates the Goldstone theorem at order 1/N. In using the O(4) model as a low energy effective field theory of pions to study the time evolution of disoriented chiral condensates one has to {\em{explicitly}} break the O(4) symmetry to give the physical pions a nonzero mass. In this effective theory the {\em additional} small contribution to the pion mass due to the violation of the Goldstone theorem in the 2-PI-1/N equations should be numerically unimportant
    • …
    corecore