3 research outputs found

    Generalized Structural Description of Calcium–Sodium Aluminosilicate Hydrate Gels: The Cross-Linked Substituted Tobermorite Model

    No full text
    Structural models for the primary strength and durability-giving reaction product in modern cements, a calcium (alumino)­silicate hydrate gel, have previously been based solely on non-cross-linked tobermorite structures. However, recent experimental studies of laboratory-synthesized and alkali-activated slag (AAS) binders have indicated that the calcium–sodium aluminosilicate hydrate [C-(N)-A-S-H] gel formed in these systems can be significantly cross-linked. Here, we propose a model that describes the C-(N)-A-S-H gel as a mixture of cross-linked and non-cross-linked tobermorite-based structures (the cross-linked substituted tobermorite model, CSTM), which can more appropriately describe the spectroscopic and density information available for this material. Analysis of the phase assemblage and Al coordination environments of AAS binders shows that it is not possible to fully account for the chemistry of AAS by use of the assumption that all of the tetrahedral Al is present in a tobermorite-type C-(N)-A-S-H gel, due to the structural constraints of the gel. Application of the CSTM can for the first time reconcile this information, indicating the presence of an additional activation product that contains highly connected four-coordinated silicate and aluminate species. The CSTM therefore provides a more advanced description of the chemistry and structure of calcium–sodium aluminosilicate gel structures than that previously established in the literature

    Generalized Structural Description of Calcium–Sodium Aluminosilicate Hydrate Gels: The Cross-Linked Substituted Tobermorite Model

    No full text
    Structural models for the primary strength and durability-giving reaction product in modern cements, a calcium (alumino)­silicate hydrate gel, have previously been based solely on non-cross-linked tobermorite structures. However, recent experimental studies of laboratory-synthesized and alkali-activated slag (AAS) binders have indicated that the calcium–sodium aluminosilicate hydrate [C-(N)-A-S-H] gel formed in these systems can be significantly cross-linked. Here, we propose a model that describes the C-(N)-A-S-H gel as a mixture of cross-linked and non-cross-linked tobermorite-based structures (the cross-linked substituted tobermorite model, CSTM), which can more appropriately describe the spectroscopic and density information available for this material. Analysis of the phase assemblage and Al coordination environments of AAS binders shows that it is not possible to fully account for the chemistry of AAS by use of the assumption that all of the tetrahedral Al is present in a tobermorite-type C-(N)-A-S-H gel, due to the structural constraints of the gel. Application of the CSTM can for the first time reconcile this information, indicating the presence of an additional activation product that contains highly connected four-coordinated silicate and aluminate species. The CSTM therefore provides a more advanced description of the chemistry and structure of calcium–sodium aluminosilicate gel structures than that previously established in the literature

    New Structural Model of Hydrous Sodium Aluminosilicate Gels and the Role of Charge-Balancing Extra-Framework Al

    No full text
    A new structural model of hydrous alkali aluminosilicate gel (N-A-S-H) frameworks is proposed, in which charge-balancing extra-framework Al species are observed in N-A-S-H gels for the first time. This model describes the key nanostructural features of these gels, which are identified through the application of <sup>17</sup>O, <sup>23</sup>Na, and <sup>27</sup>Al triple quantum magic angle spinning solid-state nuclear magnetic resonance spectroscopy to synthetic <sup>17</sup>O-enriched gels of differing Si/Al ratios. The alkali aluminosilicate gel predominantly comprises Q<sup>4</sup>(4Al), Q<sup>4</sup>(3Al), Q<sup>4</sup>(2Al), and Q<sup>4</sup>(1Al) Si units charge-balanced by Na<sup>+</sup> ions that are coordinated by either 3 or 4 framework oxygen atoms. A significant proportion of Al<sup>3+</sup> in tetrahedral coordination exist in sites of lower symmetry, where some of the charge-balancing capacity is provided by extra-framework Al species which have not previously been observed in these materials. The mean Si<sup>IV</sup>–O–Al<sup>IV</sup> bond angles for each type of Al<sup>IV</sup> environments are highly consistent, with compositional changes dictating the relative proportions of individual Al<sup>IV</sup> species but not altering the local structure of each individual Al<sup>IV</sup> site. This model provides a more advanced description of the chemistry and structure of alkali aluminosilicate gels and is crucial in understanding and controlling the molecular interactions governing gel formation, mechanical properties, and durability
    corecore