2,107 research outputs found

    1895 Code Vol. 3

    Full text link
    https://digitalcommons.law.uga.edu/ga_code/1026/thumbnail.jp

    A self-powered pumping system for in situ extraction of particulate and dissolved materials from large volumes of seawater

    Get PDF
    A pumping system has been developed for the in situ extraction of particles and of dissolved constituents from large volumes of seawater. The assembly consists of a battery-powered submersible pump, filters, and chemisorptive cartridges; it is entirely self-contained and has been used successfully on ship's hydrographic wire to depths as great as 5800 m. The pump is designed to operate at a maximum pressure drop of 66 cm of Hg; flow rates have varied from 1.3 to 5.1 liters/min. We have sampled volumes as large as 758 liters, and the measured battery drain suggests that volumes several times this could be pumped at any depth. The system is being used to study a variety of artificial radionuclides, but modifications of the filter or chemisorbent units would make it useful in many other geochemical applications.Prepared for the U.S. Department of Energy under Contracts DE-AC02-76EV03563 and DE-AC02-81EV10694 and through Sandia Laboratories under Contracts 13-2562 and 16/3112

    Active Stat3 is required for survival of human squamous cell carcinoma cells in serum-free conditions

    Get PDF
    BACKGROUND: Squamous cell carcinoma (SCC) of the skin is the most aggressive form of non-melanoma skin cancer (NMSC), and is the single most commonly diagnosed cancer in the U.S., with over one million new cases reported each year. Recent studies have revealed an oncogenic role of activated signal transducer and activator of transcription 3 (Stat3) in many human tumors, especially in those of epithelial origin, including skin SCC. Stat3 is a mediator of numerous growth factor and cytokine signaling pathways, all of which activate it through phosphorylation of tyrosine 705. RESULTS: To further address the role of Stat3 in skin SCC tumorigenesis, we have analyzed a panel of human skin-derived cell lines ranging from normal human epidermal keratinocytes (NHEK), to non-tumorigenic transformed skin cells (HaCaT), to highly tumorigenic cells (SRB1-m7 and SRB12-p9) and observed a positive correlation between Stat3 phosphorylation and SCC malignancy. We next determined the role of Stat3 activity in cell proliferation and viability under serum-free culture conditions. This was accomplished by suppressing Stat3 activity in the SRB12-p9 cells through stable expression of a dominant negative acting form of Stat3β, which contains a tyrosine 705 to phenylalanine mutation (S3DN). The S3DN cells behaved similar to parental SRB12-p9 cells when cultured in optimal growth conditions, in the presence of 10% fetal calf serum. However, unlike the SRB12-p9 cells, S3DN cells underwent apoptotic cell death when cultured in serum-free medium (SFM). This was evidenced by multiple criteria, including accumulation of sub-G1 particles, induced PARP cleavage, and acquisition of the characteristic morphological changes associated with apoptosis. CONCLUSION: This study provides direct evidence for a role for Stat3 in maintaining cell survival in the conditions of exogenous growth factor deprivation produced by culture in SFM. We also propose that delivery of the S3DN gene or protein to tumor cells could induce apoptosis and/or sensitize those cells to the apoptotic effects of cancer therapeutic agents, raising the possibility of using S3DN as an adjunct for treatment of skin SCC

    HGF/c-met/Stat3 signaling during skin tumor cell invasion: indications for a positive feedback loop

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stat3 is a cytokine- and growth factor-inducible transcription factor that regulates cell motility, migration, and invasion under normal and pathological situations, making it a promising target for cancer therapeutics. The hepatocyte growth factor (HGF)/c-met receptor tyrosine kinase signaling pathway is responsible for stimulation of cell motility and invasion, and Stat3 is responsible for at least part of the c-met signal.</p> <p>Methods</p> <p>We have stably transfected a human squamous cell carcinoma (SCC) cell line (SRB12-p9) to force the expression of a dominant negative form of Stat3 (S3DN), which we have previously shown to suppress Stat3 activity. The <it>in vitro </it>and <it>in vivo </it>malignant behavior of the S3DN cells was compared to parental and vector transfected controls.</p> <p>Results</p> <p>Suppression of Stat3 activity impaired the ability of the S3DN cells to scatter upon stimulation with HGF (c-met ligand), enhanced their adhesion, and diminished their capacity to invade <it>in vitro </it>and <it>in vivo</it>. Surprisingly, S3DN cells also showed suppressed HGF-induced activation of c-met, and had nearly undetectable basal c-met activity, as revealed by a phospho-specific c-met antibody. In addition, we showed that there is a strong membrane specific localization of phospho-Stat3 in the wild type (WT) and vector transfected control (NEO4) SRB12-p9 cells, which is lost in the S3DN cells. Finally, co-immunoprecipitation experiments revealed that S3DN interfered with Stat3/c-met interaction.</p> <p>Conclusion</p> <p>These studies are the first confirm that interference with the HGF/c-met/Stat3 signaling pathway can block tumor cell invasion in an <it>in vivo </it>model. We also provide novel evidence for a possible positive feedback loop whereby Stat3 can activate c-met, and we correlate membrane localization of phospho-Stat3 with invasion <it>in vivo</it>.</p

    Seroprevalence of Zika virus in wild African green monkeys and baboons

    Get PDF
    ABSTRACT Zika virus (ZIKV) has recently spread through the Americas and has been associated with a range of health effects, including birth defects in children born to women infected during pregnancy. Although the natural reservoir of ZIKV remains poorly defined, the virus was first identified in a captive “sentinel” macaque monkey in Africa in 1947. However, the virus has not been reported in humans or nonhuman primates (NHPs) in Africa outside Gabon in over a decade. Here, we examine ZIKV infection in 239 wild baboons and African green monkeys from South Africa, the Gambia, Tanzania, and Zambia using combinations of unbiased deep sequencing, quantitative reverse transcription-PCR (qRT-PCR), and an antibody capture assay that we optimized using serum collected from captive macaque monkeys exposed to ZIKV, dengue virus, and yellow fever virus. While we did not find evidence of active ZIKV infection in wild NHPs in Africa, we found variable ZIKV seropositivity of up to 16% in some of the NHP populations sampled. We anticipate that these results and the methodology described within will help in continued efforts to determine the prevalence, natural reservoir, and transmission dynamics of ZIKV in Africa and elsewhere. IMPORTANCE Zika virus (ZIKV) is a mosquito-borne virus originally discovered in a captive monkey living in the Zika Forest of Uganda, Africa, in 1947. Recently, an outbreak in South America has shown that ZIKV infection can cause myriad health effects, including birth defects in the children of women infected during pregnancy. Here, we sought to investigate ZIKV infection in wild African primates to better understand its emergence and spread, looking for evidence of active or prior infection. Our results suggest that up to 16% of some populations of nonhuman primate were, at some point, exposed to ZIKV. We anticipate that this study will be useful for future studies that examine the spread of infections from wild animals to humans in general and those studying ZIKV in primates in particular. Podcast: A podcast concerning this article is available

    Ariel - Volume 4 Number 3

    Get PDF
    Editors David A. Jacoby Eugenia Miller Tom Williams Associate Editors Paul Bialas Terry Burt Michael Leo Gail Tenikat Editor Emeritus and Business Manager Richard J. Bonnano Movie Editor Robert Breckenridge Staff Richard Blutstein Mary F. Buechler Steve Glinks Len Grasman Alice M. Johnson J.D. Kanofsky Tom Lehman Dave Mayer Bernie Odd

    Aphids on Texas Small Grains and sorghum.

    Get PDF
    8 p

    Profiling lung adenocarcinoma by liquid biopsy: can one size fit all?

    Get PDF
    BACKGROUND: Cancer is first and foremost a disease of the genome. Specific genetic signatures within a tumour are prognostic of disease outcome, reflect subclonal architecture and intratumour heterogeneity, inform treatment choices and predict the emergence of resistance to targeted therapies. Minimally invasive liquid biopsies can give temporal resolution to a tumour's genetic profile and allow the monitoring of treatment response through levels of circulating tumour DNA (ctDNA). However, the detection of ctDNA in repeated liquid biopsies is currently limited by economic and time constraints associated with targeted sequencing. METHODS: Here we bioinformatically profile the mutational and copy number spectrum of The Cancer Genome Network's lung adenocarcinoma dataset to uncover recurrently mutated genomic loci. RESULTS: We build a panel of 400 hotspot mutations and show that the coverage extends to more than 80% of the dataset at a median depth of 8 mutations per patient. Additionally, we uncover several novel single-nucleotide variants present in more than 5% of patients, often in genes not commonly associated with lung adenocarcinoma. CONCLUSION: With further optimisation, this hotspot panel could allow molecular diagnostics laboratories to build curated primer banks for 'off-the-shelf' monitoring of ctDNA by droplet-based digital PCR or similar techniques, in a time- and cost-effective manner
    • …
    corecore