1,138 research outputs found
Lifetime Extension of RF MEMS Direct Contact Switches in Hot-Switching Operations by Ball-Grid-Array (BGA) Dimple Design
Direct contact RF microelectromechanical systems switches have demonstrated excellent ultrawideband performance from dc to 100 GHz. However, they are prone to failures due to contact adhesion and arcing, particularly for pure-gold/pure-gold contacts. In this letter, we present a new contact design employing ball grid array (BGA) dimples that limit the effective contact area to a few tens of nanometers in diameter. We experimentally show the performance of the BGA dimple with pure-gold/pure-gold contacts and demonstrate RF power handling greater than 1 W during hot switching in excess of 100 million cycles.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87268/4/Saitou10.pd
Recommended from our members
Validation of a Predictive Model for Survival in Patients With Advanced Cancer: Secondary Analysis of RTOG 9714.
BackgroundThe objective of this study was to validate a simple predictive model for survival of patients with advanced cancer.MethodsPrevious studies with training and validation datasets developed a model predicting survival of patients referred for palliative radiotherapy using three readily available factors: primary cancer site, site of metastases and Karnofsky performance score (KPS). This predictive model was used in the current study, where each factor was assigned a value proportional to its prognostic weight and the sum of the weighted scores for each patient was survival prediction score (SPS). Patients were also classified according to their number of risk factors (NRF). Three risk groups were established. The Radiation Therapy and Oncology Group (RTOG) 9714 data was used to provide an additional external validation set comprised of patients treated among multiple institutions with appropriate statistical tests.ResultsThe RTOG external validation set comprised of 908 patients treated at 66 different radiation facilities from 1998 to 2002. The SPS method classified all patients into the low-risk group. Based on the NRF, two distinct risk groups with significantly different survival estimates were identified. The ability to predict survival was similar to that of the training and previous validation datasets for both the SPS and NRF methods.ConclusionsThe three variable NRF model is preferred because of its relative simplicity
Contact Physics Modeling and Optimization Design of RF-MEMS Cantilever Switches
RF MEMS direct-contact switches exhibit many advantages over the conventional semiconductor switches; however, existing drawbacks such as low power handling, high pull-in voltage and long switch opening time are most critical. This paper presents an optimization design for an RF-MEMS cantilever direct-contact switch to achieve maximum power handling capability, minimum pull-in voltage and switch opening time simultaneously. A 2-step optimization technique is proposed to achieve the optimal design to allow for a power handling capability of 130 mW, a pull-in voltage of 52 V, and a switch opening time 4.4 _s presented. The optimization results show that substantial room exists for improving the current designs of RF MEMS direct-contact switches.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87255/4/Saitou72.pd
Asperity heating for repair of metal contact RF-MEMS switches
We have experimentally observed the failure of metal contact RF MEMS switches due to a rapid rise in contact resistance during switching. We were able to repair the failed switches through heating the contact asperities by applying sufficient contact voltage. The data suggest the hypothesis that increasing contact resistance is caused by strain hardening of the contact surface. With this understanding, appropriate corrective measures can be taken to overcome failure, and suggestions for doing so are given in the paper.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87250/4/Saitou87.pd
Threshold effects in excited charmed baryon decays
Motivated by recent results on charmed baryons from CLEO and FOCUS, we
reexamine the couplings of the orbitally excited charmed baryons. Due to its
proximity to the [Sigma_c pi] threshold, the strong decays of the
Lambda_c(2593) are sensitive to finite width effects. This distorts the shape
of the invariant mass spectrum in Lambda_{c1}-> Lambda_c pi^+pi^- from a simple
Breit-Wigner resonance, which has implications for the experimental extraction
of the Lambda_c(2593) mass and couplings. We perform a fit to unpublished CLEO
data which gives M(Lambda_c(2593)) - M(Lambda_c) = 305.6 +- 0.3 MeV and h2^2 =
0.24^{+0.23}_{-0.11}, with h2 the Lambda_{c1}-> Sigma_c pi strong coupling in
the chiral Lagrangian. We also comment on the new orbitally excited states
recently observed by CLEO.Comment: 9 pages, 3 figure
Effect of Nanoscale Heating on Electrical Transport in RF MEMS Switch Contacts
This paper explores contact heating in microelectromechanical systems (MEMS) switches with contact spot sizes less than 100 nm in diameter. Experiments are conducted to demonstrate that contact heating causes a drop in contact resistance. However, existing theory is shown to over-predict heating for MEMS switch contacts because it does not consider ballistic transport of electrons in the contact. Therefore, we extend the theory and develop a predictive model that shows excellent agreement with the experimental results. It is also observed that mechanical cycling causes an increase in contact resistance. We identify this effect as related to the build-up of an insulating film and demonstrate operational conditions to prevent an increase in contact resistance. The improved understanding of contact behavior gained through our modeling and experiments allows switch performance to be improved.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87261/4/Saitou21.pd
Subdomain Location of Mutations in Cardiac Actin Correlate with Type of Functional Change
Determining the molecular mechanisms that lead to the development of heart failure will help us gain better insight into the most costly health problem in the Western world. To understand the roles that the actin protein plays in the development of heart failure, we have taken a systematic approach toward characterizing human cardiac actin mutants that have been associated with either hypertrophic or dilated cardiomyopathy. Seven known cardiac actin mutants were expressed in a baculovirus system, and their intrinsic properties were studied. In general, the changes to the properties of the actin proteins themselves were subtle. The R312H variant exhibited reduced stability, with a Tm of 53.6°C compared to 56.8°C for WT actin, accompanied with increased polymerization critical concentration and Pi release rate, and a marked increase in nucleotide release rates. Substitution of methionine for leucine at amino acid 305 showed no impact on the stability, nucleotide release rates, or DNase-I inhibition ability of the actin monomer; however, during polymerization, a 2-fold increase in Pi release was observed. Increases to both the Tm and DNase-I inhibition activity suggested interactions between E99K actin molecules under monomer-promoting conditions. Y166C actin had a higher critical concentration resulting in a lower Pi release rate due to reduced filament-forming potential. The locations of mutations on the ACTC protein correlated with the molecular effects; in general, mutations in subdomain 3 affected the stability of the ACTC protein or affect the polymerization of actin filaments, while mutations in subdomains 1 and 4 more likely affect protein-protein interactions
- …