2 research outputs found

    Silver Diffusion in Organic Optoelectronic Devices: Deposition-Related Processes versus Secondary Ion Mass Spectrometry Analysis Artifacts

    No full text
    The development of organic optoelectronic devices relies on controlling interfaces during thin-film deposition and requires an accurate characterization of the film composition at these interfaces. Dynamic secondary ion mass spectrometry (SIMS) is widely used to investigate multilayer thin-film structures. Routine analysis protocols are well established for classical semiconductor samples, but for organic or mixed metallic–organic samples the limitations of the technique are less well established. In the current work, low-energy dynamic SIMS is used on metal–organic multilayered model structures similar to those in organic optoelectronic devices to study the origin of diffusion of metal into the organic layer (e.g., irradiation-induced diffusion during SIMS analysis or during the deposition process). Samples contain silver and organic compounds sequentially deposited by thermal evaporation in vacuum onto a Si substrate. They are analyzed using a 250 eV to 1 keV Cs<sup>+</sup> primary ion beam. It is found that the mixing of silver into the organic layer depends on the impact energy and the conditions for sample preparation. This irradiation effect can be minimized by a back-side depth profiling approach, which was developed in this work. By applying this method, it is shown that some silver is likely to diffuse into the organic layers during the deposition process

    Thermal Conductance in Cross-linked Polymers: Effects of Non-Bonding Interactions

    No full text
    Weak interchain interactions have been considered to be a bottleneck for heat transfer in polymers, while covalent bonds are believed to give a high thermal conductivity to polymer chains. For this reason, cross-linkers have been explored as a means to enhance polymer thermal conductivity; however, results have been inconsistent. Some studies show an enhancement in the thermal conductivity for polymers upon cross-linking, while others show the opposite trend. In this work we study the mechanisms of heat transfer in cross-linked polymers in order to understand the reasons for these discrepancies, in particular examining the relative contributions of covalent (referred to here as “bonding”) and nonbonding (e.g., van der Waals and electrostatic) interactions. Our results indicate cross-linkers enhance thermal conductivity primarily when they are short in length and thereby bring polymer chains closer to each other, leading to increased interchain heat transfer by enhanced nonbonding interactions between the chains (nonbonding interactions being highly dependent on interchain distance). This suggests that enhanced nonbonding interactions, rather than thermal pathways through cross-linker covalent bonds, are the primary transport mechanism by which thermal conductivity is increased. We further illustrate this by showing that energy from THz acoustic waves travels significantly faster in polymers when nonbonding interactions are included versus when only covalent interactions are present. These results help to explain prior studies that measure differing trends in thermal conductivity for polymers upon cross-linking with various species
    corecore