196 research outputs found

    Editorial Overview: Myosins in Review.

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via https://doi.org/10.1111/tra.1240

    Molecular roles of Myo1c function in lipid raft exocytosis.

    Get PDF
    Lipid rafts are highly dynamic membrane subdomains enriched in specific protein and lipid components that create specialized 'organizing' platforms essential for an array of important cellular functions. The role of lipid rafts in membrane trafficking involves the constant remodelling of the plasma membrane through membrane uptake and balanced exocytosis of intracellular membranes. Our lab has identified the first motor protein, myosin 1c (Myo1c) involved in driving the recycling of lipid-raft enriched membranes from the perinuclear recycling compartment to the cell surface. This newly discovered role for Myo1c in lipid raft exocytosis is crucial for cell spreading, migration and pathogen entry; key cellular processes that require cell surface expansion and plasticity. Here we present a model suggesting Myo1c's possible molecular functions in lipid raft recycling and discuss its wider implications for important cellular functions

    Myosins, Actin and Autophagy.

    Get PDF
    Myosin motor proteins working together with the actin cytoskeleton drive a wide range of cellular processes. In this review, we focus on their roles in autophagy - the pathway the cell uses to ensure homeostasis by targeting pathogens, misfolded proteins and damaged organelles for degradation. The actin cytoskeleton regulated by a host of nucleating, anchoring and stabilizing proteins provides the filament network for the delivery of essential membrane vesicles from different cellular compartments to the autophagosome. Actin networks have also been implicated in structurally supporting the expanding phagophore, moving autophagosomes and enabling efficient fusion with the lysosome. Only a few myosins have so far been shown to play a role in autophagy. Non-muscle myosin IIA functions in the early stages delivering membrane for the initial formation of the autophagosome, whereas myosin IC and myosin VI are involved in the final stages providing specific membranes for autophagosome maturation and its fusion with the lysosome.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/tra.1241

    Calcium gets myosin VI ready for work.

    Get PDF
    Funded by the BBSRC.This is the author accepted manuscript. The final version is available from the National Academy of Sciences via http://dx.doi.org/10.1073/pnas.160072511

    Structural changes accompanying phosphorylation of tarantula muscle myosin filaments

    Get PDF
    Electron microscopy has been used to study the structural changes that occur in the myosin filaments of tarantula striated muscle when they are phosphorylated. Myosin filaments in muscle homogenates maintained in relaxing conditions (ATP, EGTA) are found to have nonphosphorylated regulatory light chains as shown by urea/glycerol gel electrophoresis and [32P]phosphate autoradiography. Negative staining reveals an ordered, helical arrangement of crossbridges in these filaments, in which the heads from axially neighboring myosin molecules appear to interact with each other. When the free Ca2+ concentration in a homogenate is raised to 10(-4) M, or when a Ca2+-insensitive myosin light chain kinase is added at low Ca2+ (10(-8) M), the regulatory light chains of myosin become rapidly phosphorylated. Phosphorylation is accompanied by potentiation of the actin activation of the myosin Mg-ATPase activity and by loss of order of the helical crossbridge arrangement characteristic of the relaxed filament. We suggest that in the relaxed state, when the regulatory light chains are not phosphorylated, the myosin heads are held down on the filament backbone by head-head interactions or by interactions of the heads with the filament backbone. Phosphorylation of the light chains may alter these interactions so that the crossbridges become more loosely associated with the filament backbone giving rise to the observed changes and facilitating crossbridge interaction with actin

    Myosin VI and optineurin are required for polarized EGFR delivery and directed migration.

    Get PDF
    The polarized trafficking of membrane proteins into the leading edge of the cell is an integral requirement for cell migration. Myosin VI and its interacting protein optineurin have previously been shown to operate in anterograde trafficking pathways, especially for the polarized delivery of cargo to the basolateral domain in epithelial cells. Here we show that in migratory cells ablation of myosin VI or optineurin inhibits the polarized delivery of the epidermal growth factor receptor (EGFR) into the leading edge and leads to profound defects in lamellipodia formation. Depletion of either myosin VI or optineurin, however, does not impair the overall ability of cells to migrate in a random migration assay, but it dramatically reduces directed migration towards a growth factor stimulus. In summary, we identified a specific role for myosin VI and optineurin in directionally persistent cell migration, which involves the polarized delivery of vesicles containing EGFR into the leading edge of the cell

    Phosphorylation site sequence of smooth muscle myosin light chain (Mr = 20 000)

    Get PDF
    AbstractThe amino terminal sequence of the myosin light chain (Mr = 20 000) isolated from chicken gizzards was found to be acetyl-Ser-Ser-Lys-Arg-Ala-Lys-Ala-Lys-Thr-Thr-Lys-Lys-Arg-Pro-Gln-Arg-Ala-Thr-Ser(P)-Asn-Val-Phe. This sequence assignment differs from that reported by Maita et al. [(1981) European J. Biochem. 117, 417] in the order of the tryptic peptides. The revised amino acid sequence exhibits greater homology with the phosphorylation site sequences of the regulatory light chains from cardiac and skeletal muscle. Moreover it is now apparent why synthetic peptides corresponding to the previously reported sequence were very poor substrates for the myosin light chain kinase

    Myosin VI is required for sorting of AP-1B-dependent cargo to the basolateral domain in polarized MDCK cells.

    Get PDF
    In polarized epithelial cells, newly synthesized membrane proteins are delivered on specific pathways to either the apical or basolateral domains, depending on the sorting motifs present in these proteins. Because myosin VI has been shown to facilitate secretory traffic in nonpolarized cells, we investigated its role in biosynthetic trafficking pathways in polarized MDCK cells. We observed that a specific splice isoform of myosin VI with no insert in the tail domain is required for the polarized transport of tyrosine motif containing basolateral membrane proteins. Sorting of other basolateral or apical cargo, however, does not involve myosin VI. Site-directed mutagenesis indicates that a functional complex consisting of myosin VI, optineurin, and probably the GTPase Rab8 plays a role in the basolateral delivery of membrane proteins, whose sorting is mediated by the clathrin adaptor protein complex (AP) AP-1B. Our results suggest that myosin VI is a crucial component in the AP-1B-dependent biosynthetic sorting pathway to the basolateral surface in polarized epithelial cells

    Myosin VI and its binding partner optineurin are involved in secretory vesicle fusion at the plasma membrane.

    Get PDF
    During constitutive secretion, proteins synthesized at the endoplasmic reticulum (ER) are transported to the Golgi complex for processing and then to the plasma membrane for incorporation or extracellular release. This study uses a unique live-cell constitutive secretion assay to establish roles for the molecular motor myosin VI and its binding partner optineurin in discrete stages of secretion. Small interfering RNA-based knockdown of myosin VI causes an ER-to-Golgi transport delay, suggesting an unexpected function for myosin VI in the early secretory pathway. Depletion of myosin VI or optineurin does not affect the number of vesicles leaving the trans-Golgi network (TGN), indicating that these proteins do not function in TGN vesicle formation. However, myosin VI and optineurin colocalize with secretory vesicles at the plasma membrane. Furthermore, live-cell total internal reflection fluorescence microscopy demonstrates that myosin VI or optineurin depletion reduces the total number of vesicle fusion events at the plasma membrane and increases both the proportion of incomplete fusion events and the number of docked vesicles in this region. These results suggest a novel role for myosin VI and optineurin in regulation of fusion pores formed between secretory vesicles and the plasma membrane during the final stages of secretion
    corecore