5,754 research outputs found

    RNA interference approaches for treatment of HIV-1 infection.

    Get PDF
    HIV/AIDS is a chronic and debilitating disease that cannot be cured with current antiretroviral drugs. While combinatorial antiretroviral therapy (cART) can potently suppress HIV-1 replication and delay the onset of AIDS, viral mutagenesis often leads to viral escape from multiple drugs. In addition to the pharmacological agents that comprise cART drug cocktails, new biological therapeutics are reaching the clinic. These include gene-based therapies that utilize RNA interference (RNAi) to silence the expression of viral or host mRNA targets that are required for HIV-1 infection and/or replication. RNAi allows sequence-specific design to compensate for viral mutants and natural variants, thereby drastically expanding the number of therapeutic targets beyond the capabilities of cART. Recent advances in clinical and preclinical studies have demonstrated the promise of RNAi therapeutics, reinforcing the concept that RNAi-based agents might offer a safe, effective, and more durable approach for the treatment of HIV/AIDS. Nevertheless, there are challenges that must be overcome in order for RNAi therapeutics to reach their clinical potential. These include the refinement of strategies for delivery and to reduce the risk of mutational escape. In this review, we provide an overview of RNAi-based therapies for HIV-1, examine a variety of combinatorial RNAi strategies, and discuss approaches for ex vivo delivery and in vivo delivery

    Ribozyme Diagnostics Comes of Age

    Get PDF
    AbstractBiosensing ribozymes could soon be used to diagnose viral infection. The Kossen group from Sirna Therapeutics have developed a sensitive, high-throughput means of screening for hepatitis C virus, using their target activated half-ribozyme technology, as reported in the June issue of Chemistry & Biology [1]

    Aptamer-targeted cell-specific RNA interference

    Get PDF
    This potent ability of small interfering (si)RNAs to inhibit the expression of complementary RNA transcripts is being exploited as a new class of therapeutics for a variety of diseases. However, the efficient and safe delivery of siRNAs into specific cell populations is still the principal challenge in the clinical development of RNAi therapeutics. With the increasing enthusiasm for developing targeted delivery vehicles, nucleic acid-based aptamers targeting cell surface proteins are being explored as promising delivery vehicles to target a distinct disease or tissue in a cell-type-specific manner. The aptamer-based delivery of siRNAs can often enhance the therapeutic efficacy and reduce the unwanted off-target effects of siRNAs. In particular, for RNA interference-based therapeutics, aptamers represent an efficient agent for cell type-specific, systemic delivery of these oligonucleotides. In this review, we summarize recent attractive developments in creatively using cell-internalizing aptamers to deliver siRNAs to target cells. The optimization and improvement of aptamer-targeted siRNAs for clinical translation are further highlighted

    Structural behaviour of copper chloride catalysts during the chlorination of CO to phosgene

    Get PDF
    The interaction of CO with an attapulgite-supported Cu(II)Cl2 catalyst has been examined in a micro-reactor arrangement. CO exposure to the dried, as-received catalyst at elevated temperatures leads to the formation of CO2 as the only identifiable product. However, phosgene production can be induced by a catalyst pre-treatment where the supported Cu(II)Cl2 sample is exposed to a diluted stream of chlorine. Subsequent CO exposure at ~ 370°C then leads to phosgene production. In order to investigate the origins of this atypical set of reaction characteristics, a series of x-ray absorption experiments were performed that were supplemented by DFT calculations. XANES measurements establish that at the elevated temperatures connected with phosgene formation, the catalyst is comprised of Cu+ and a small amount of Cu2+. Moreover, the data show that unique to the chlorine pre-treated sample, CO exposure at elevated temperature results in a short-lived oxidation of the copper. On the basis of calculated CO adsorption energies, DFT calculations indicate that a mixed Cu+/Cu2+ catalyst is required to support CO chemisorption
    • …
    corecore