17 research outputs found

    Hydrazine Capture and N–N Bond Cleavage at Iron Enabled by Flexible Appended Lewis Acids

    No full text
    Incorporation of two 9-borabicyclo[3.3.1]­nonyl substituents within the secondary coordination sphere of a pincer-based Fe­(II) complex provides Lewis acidic sites capable of binding 1 or 2 equiv of N<sub>2</sub>H<sub>4</sub>. Reduction of the 1:1 Fe:N<sub>2</sub>H<sub>4</sub> species affords a rare Fe­(NH<sub>2</sub>)<sub>2</sub> complex in which the amido ligands are stabilized through interactions with the appended boranes. The NH<sub>2</sub> units can be released as NH<sub>3</sub> upon protonation and exchanged with exogenous N<sub>2</sub>H<sub>4</sub>

    Tailoring the Electronic Structure of Uranium Mono(imido) Species through Ligand Variation

    No full text
    Uranium mono­(imido) species have been prepared via the oxidation of Cp*U­(<sup>Mes</sup>PDI<sup>Me</sup>)­(THF) (<b>1-Cp*</b>) and [Cp<sup>P</sup>U­(<sup>Mes</sup>PDI<sup>Me</sup>)]<sub>2</sub> (<b>1-Cp</b><sup><b>P</b></sup>), where Cp* = η<sup>5</sup>-1,2,3,4,5-pentamethylcyclopentadienide, Cp<sup>P</sup> = 1-(7,7-dimethylbenzyl)­cyclopentadienide, <sup>Mes</sup>PDI<sup>Me</sup> = 2,6-[(Mes)­NCMe]<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N, and Mes = 2,4,6-trimethylphenyl, with organoazides. Treating either with N<sub>3</sub>DIPP (DIPP = 2,6-diisopropylphenyl) formed uranium­(IV) mono­(imido) complexes, Cp<sup>P</sup>U­(NDIPP)­(<sup>Mes</sup>PDI<sup>Me</sup>) (<b>2-Cp</b><sup><b>P</b></sup>) and Cp*U­(NDIPP)­(<sup>Mes</sup>PDI<sup>Me</sup>) (<b>2-Cp*</b>), featuring reduced [<sup>Mes</sup>PDI<sup>Me</sup>]<sup>−</sup>. The addition of electron-donating 1-azidoadamantane (N<sub>3</sub>Ad) to <b>1-Cp*</b> generated a dimeric product, [Cp*U­(NAd)­(<sup>Mes</sup>HPDI<sup>Me</sup>)]<sub>2</sub> (<b>3</b>), from radical coupling at the <i>p</i>-pyridine position of the pyridine­(diimine) ligand and H-atom abstraction, formed through a monomeric intermediate that was observed in solution but could not be isolated. To support this, Cp*U­(<sup><i>t</i></sup>Bu-<sup>Mes</sup>PDI<sup>Me</sup>)­(THF) (<b>1-</b><sup><i><b>t</b></i></sup><b>Bu</b>), which has a <i>tert</i>-butyl group protecting the <i>para</i> position, was also treated with N<sub>3</sub>Ad, and the monomeric product, Cp*U­(NAd)­(<sup><i>t</i></sup>Bu-<sup>Mes</sup>PDI<sup>Me</sup>) (<b>2-</b><sup><i><b>t</b></i></sup><b>Bu</b>), was isolated. All isolated complexes were analyzed spectroscopically and structurally, and the dynamic solution behavior was examined using electronic absorption spectroscopy

    A Uranium(IV) Triamide Species with Brønsted Basic Ligand Character: Metal–Ligand Cooperativity in the f Block

    No full text
    Deprotonation of the tridentate triamine ligand H<sub>3</sub>N<sub>3</sub><sup>Mes</sup> ((2,4,6-Me<sub>3</sub>C<sub>6</sub>H<sub>2</sub>N­(H)­CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>NH) with 2 equiv of KCH<sub>2</sub>Ph followed by treatment with 1 equiv of UCl<sub>4</sub> afforded the diamidoamine uranium complex (THF)<sub>2</sub>UCl<sub>2</sub>(HN<sub>3</sub><sup>Mes</sup>) (<b>1-THF</b>). This species was further derivatized with either OPPh<sub>3</sub> or KCp* to generate (Ph<sub>3</sub>PO)­UCl<sub>2</sub>(HN<sub>3</sub><sup>Mes</sup>) (<b>1-OPPh</b><sub><b>3</b></sub>) or Cp*UCl­(HN<sub>3</sub><sup>Mes</sup>) (<b>2-Cl</b>), respectively. Deprotonation of <b>2-Cl</b> with <sup><i>n</i></sup>BuLi furnished the uranium­(IV) triamido compound Cp*U­(N<sub>3</sub><sup>Mes</sup>-LiCl­(THF)<sub>2</sub>) (<b>3-LiCl</b>), which is stabilized by the presence of LiCl. <b>3-LiCl</b> reacts readily with alcohols and thiols, including HOPh, HSPh, and HO<sup><i>t</i></sup>Bu, to furnish the respective products Cp*U­(OPh)­(HN<sub>3</sub><sup>Mes</sup>) (<b>2-OPh</b>), Cp*U­(SPh)­(HN<sub>3</sub><sup>Mes</sup>) (<b>2-SPh</b>), and Cp*U­(O<sup><i>t</i></sup>Bu)­(HN<sub>3</sub><sup>Mes</sup>) (<b>2-O</b><sup><i><b>t</b></i></sup><b>Bu</b>), which show cooperative addition of the H–E (E = O, S) bond across the U–N bond, serving to regenerate the diamidoamine ligand. Similar cooperative addition was noted for <b>3-LiCl</b> with benzophenone, furnishing Cp*U­(N<sub>3</sub><sup>Mes</sup>-OCPh<sub>2</sub>) (<b>3-OCPh</b><sub><b>2</b></sub>), which features new U–O and N–C bonds. The Brønsted basicity of the central nitrogen of <b>3-LiCl</b> was illustrated by addition of PhOAc, which favored α-carbon deprotonation over nucleophilic attack at the carbonyl. All species were subject to a complete spectroscopic and crystallographic analysis, confirming that the reactivity of <b>3-LiCl</b> in fact involves cooperation from the triamido ligand and uranium center

    Hydrogen Bonds Dictate O<sub>2</sub> Capture and Release within a Zinc Tripod

    No full text
    Six directed hydrogen bonding (H-bonding) interactions allow for the reversible capture and reduction of dioxygen to a <i>trans</i>-1,2-peroxo within a tripodal zinc­(II) framework. Spectroscopic studies of the dizinc peroxides, as well as on model zinc diazides, suggest H-bonding contributions serve a dominant role for the binding/activation of these small molecules

    New Benzylpotassium Reagents and Their Utility for the Synthesis of Homoleptic Uranium(IV) Benzyl Derivatives

    No full text
    A new family of benzylpotassium reagents, KBn′(<b>1-Bn</b>′) (Bn′ = <i>p</i>-<sup><i>i</i></sup>PrBn, <i>p</i>-<sup><i>t</i></sup>BuBn, <i>p</i>-NMe<sub>2</sub>Bn, <i>p</i>-SMeBn, <i>m-</i>OMeBn, <i>o-</i>OMeBn, 2-picolyl), was synthesized using a modified literature procedure and characterized by multinuclear NMR spectroscopy. Combining four equivalents of <b>1-Bn</b>′ with UCl<sub>4</sub> at low temperature in THF afforded the homoleptic uranium­(IV) derivatives <b>2-Bn</b>′ (<b>2-</b><i><b>p</b></i><b>-</b><sup><b><i>i</i></b></sup><b>Pr</b>,<b> 2-</b><i><b>p</b></i><b>-</b><sup><b><i>t</i></b></sup><b>Bu</b>,<b> 2-</b><i><b>p</b></i><b>-NMe</b><sub><b>2</b></sub>, <b>2-</b><i><b>p</b></i><b>-SMe</b>,<b> 2-</b><i><b>o</b></i><b>-Picolyl</b>, <b>2-</b><i><b>m</b></i><b>-OMe</b>, <b>2-</b><i><b>o</b></i><b>-OMe</b>). In addition to <sup>1</sup>H NMR spectroscopic characterization, structural studies of five of these organouranium compounds (<b>2-</b><i><b>p</b></i><b>-</b><sup><b><i>i</i></b></sup><b>Pr</b>,<b> 2-</b><i><b>p</b></i><b>-</b><sup><b><i>t</i></b></sup><b>Bu</b>,<b> 2-</b><i><b>o</b></i><b>-Picolyl</b>, <b>2-</b><i><b>m</b></i><b>-OMe</b>, <b>2-</b><i><b>o</b></i><b>-OMe</b>) were performed, showing that in many cases the benzyl groups are coordinated in an η<sup>4</sup>-fashion, lending stability to these otherwise low-coordinate molecules. In the cases of U­(<i>o-</i>OMeBn)<sub>4</sub> (<b>2-</b><i><b>o</b></i><b>-OMe</b>) and U­(2-picolyl)<sub>4</sub> (<b>2-</b><i><b>o</b></i><b>-Picolyl</b>), heteroatom coordination to the uranium center is observed

    New Benzylpotassium Reagents and Their Utility for the Synthesis of Homoleptic Uranium(IV) Benzyl Derivatives

    No full text
    A new family of benzylpotassium reagents, KBn′(<b>1-Bn</b>′) (Bn′ = <i>p</i>-<sup><i>i</i></sup>PrBn, <i>p</i>-<sup><i>t</i></sup>BuBn, <i>p</i>-NMe<sub>2</sub>Bn, <i>p</i>-SMeBn, <i>m-</i>OMeBn, <i>o-</i>OMeBn, 2-picolyl), was synthesized using a modified literature procedure and characterized by multinuclear NMR spectroscopy. Combining four equivalents of <b>1-Bn</b>′ with UCl<sub>4</sub> at low temperature in THF afforded the homoleptic uranium­(IV) derivatives <b>2-Bn</b>′ (<b>2-</b><i><b>p</b></i><b>-</b><sup><b><i>i</i></b></sup><b>Pr</b>,<b> 2-</b><i><b>p</b></i><b>-</b><sup><b><i>t</i></b></sup><b>Bu</b>,<b> 2-</b><i><b>p</b></i><b>-NMe</b><sub><b>2</b></sub>, <b>2-</b><i><b>p</b></i><b>-SMe</b>,<b> 2-</b><i><b>o</b></i><b>-Picolyl</b>, <b>2-</b><i><b>m</b></i><b>-OMe</b>, <b>2-</b><i><b>o</b></i><b>-OMe</b>). In addition to <sup>1</sup>H NMR spectroscopic characterization, structural studies of five of these organouranium compounds (<b>2-</b><i><b>p</b></i><b>-</b><sup><b><i>i</i></b></sup><b>Pr</b>,<b> 2-</b><i><b>p</b></i><b>-</b><sup><b><i>t</i></b></sup><b>Bu</b>,<b> 2-</b><i><b>o</b></i><b>-Picolyl</b>, <b>2-</b><i><b>m</b></i><b>-OMe</b>, <b>2-</b><i><b>o</b></i><b>-OMe</b>) were performed, showing that in many cases the benzyl groups are coordinated in an η<sup>4</sup>-fashion, lending stability to these otherwise low-coordinate molecules. In the cases of U­(<i>o-</i>OMeBn)<sub>4</sub> (<b>2-</b><i><b>o</b></i><b>-OMe</b>) and U­(2-picolyl)<sub>4</sub> (<b>2-</b><i><b>o</b></i><b>-Picolyl</b>), heteroatom coordination to the uranium center is observed

    New Benzylpotassium Reagents and Their Utility for the Synthesis of Homoleptic Uranium(IV) Benzyl Derivatives

    No full text
    A new family of benzylpotassium reagents, KBn′(<b>1-Bn</b>′) (Bn′ = <i>p</i>-<sup><i>i</i></sup>PrBn, <i>p</i>-<sup><i>t</i></sup>BuBn, <i>p</i>-NMe<sub>2</sub>Bn, <i>p</i>-SMeBn, <i>m-</i>OMeBn, <i>o-</i>OMeBn, 2-picolyl), was synthesized using a modified literature procedure and characterized by multinuclear NMR spectroscopy. Combining four equivalents of <b>1-Bn</b>′ with UCl<sub>4</sub> at low temperature in THF afforded the homoleptic uranium­(IV) derivatives <b>2-Bn</b>′ (<b>2-</b><i><b>p</b></i><b>-</b><sup><b><i>i</i></b></sup><b>Pr</b>,<b> 2-</b><i><b>p</b></i><b>-</b><sup><b><i>t</i></b></sup><b>Bu</b>,<b> 2-</b><i><b>p</b></i><b>-NMe</b><sub><b>2</b></sub>, <b>2-</b><i><b>p</b></i><b>-SMe</b>,<b> 2-</b><i><b>o</b></i><b>-Picolyl</b>, <b>2-</b><i><b>m</b></i><b>-OMe</b>, <b>2-</b><i><b>o</b></i><b>-OMe</b>). In addition to <sup>1</sup>H NMR spectroscopic characterization, structural studies of five of these organouranium compounds (<b>2-</b><i><b>p</b></i><b>-</b><sup><b><i>i</i></b></sup><b>Pr</b>,<b> 2-</b><i><b>p</b></i><b>-</b><sup><b><i>t</i></b></sup><b>Bu</b>,<b> 2-</b><i><b>o</b></i><b>-Picolyl</b>, <b>2-</b><i><b>m</b></i><b>-OMe</b>, <b>2-</b><i><b>o</b></i><b>-OMe</b>) were performed, showing that in many cases the benzyl groups are coordinated in an η<sup>4</sup>-fashion, lending stability to these otherwise low-coordinate molecules. In the cases of U­(<i>o-</i>OMeBn)<sub>4</sub> (<b>2-</b><i><b>o</b></i><b>-OMe</b>) and U­(2-picolyl)<sub>4</sub> (<b>2-</b><i><b>o</b></i><b>-Picolyl</b>), heteroatom coordination to the uranium center is observed

    New Benzylpotassium Reagents and Their Utility for the Synthesis of Homoleptic Uranium(IV) Benzyl Derivatives

    No full text
    A new family of benzylpotassium reagents, KBn′(<b>1-Bn</b>′) (Bn′ = <i>p</i>-<sup><i>i</i></sup>PrBn, <i>p</i>-<sup><i>t</i></sup>BuBn, <i>p</i>-NMe<sub>2</sub>Bn, <i>p</i>-SMeBn, <i>m-</i>OMeBn, <i>o-</i>OMeBn, 2-picolyl), was synthesized using a modified literature procedure and characterized by multinuclear NMR spectroscopy. Combining four equivalents of <b>1-Bn</b>′ with UCl<sub>4</sub> at low temperature in THF afforded the homoleptic uranium­(IV) derivatives <b>2-Bn</b>′ (<b>2-</b><i><b>p</b></i><b>-</b><sup><b><i>i</i></b></sup><b>Pr</b>,<b> 2-</b><i><b>p</b></i><b>-</b><sup><b><i>t</i></b></sup><b>Bu</b>,<b> 2-</b><i><b>p</b></i><b>-NMe</b><sub><b>2</b></sub>, <b>2-</b><i><b>p</b></i><b>-SMe</b>,<b> 2-</b><i><b>o</b></i><b>-Picolyl</b>, <b>2-</b><i><b>m</b></i><b>-OMe</b>, <b>2-</b><i><b>o</b></i><b>-OMe</b>). In addition to <sup>1</sup>H NMR spectroscopic characterization, structural studies of five of these organouranium compounds (<b>2-</b><i><b>p</b></i><b>-</b><sup><b><i>i</i></b></sup><b>Pr</b>,<b> 2-</b><i><b>p</b></i><b>-</b><sup><b><i>t</i></b></sup><b>Bu</b>,<b> 2-</b><i><b>o</b></i><b>-Picolyl</b>, <b>2-</b><i><b>m</b></i><b>-OMe</b>, <b>2-</b><i><b>o</b></i><b>-OMe</b>) were performed, showing that in many cases the benzyl groups are coordinated in an η<sup>4</sup>-fashion, lending stability to these otherwise low-coordinate molecules. In the cases of U­(<i>o-</i>OMeBn)<sub>4</sub> (<b>2-</b><i><b>o</b></i><b>-OMe</b>) and U­(2-picolyl)<sub>4</sub> (<b>2-</b><i><b>o</b></i><b>-Picolyl</b>), heteroatom coordination to the uranium center is observed

    New Benzylpotassium Reagents and Their Utility for the Synthesis of Homoleptic Uranium(IV) Benzyl Derivatives

    No full text
    A new family of benzylpotassium reagents, KBn′(<b>1-Bn</b>′) (Bn′ = <i>p</i>-<sup><i>i</i></sup>PrBn, <i>p</i>-<sup><i>t</i></sup>BuBn, <i>p</i>-NMe<sub>2</sub>Bn, <i>p</i>-SMeBn, <i>m-</i>OMeBn, <i>o-</i>OMeBn, 2-picolyl), was synthesized using a modified literature procedure and characterized by multinuclear NMR spectroscopy. Combining four equivalents of <b>1-Bn</b>′ with UCl<sub>4</sub> at low temperature in THF afforded the homoleptic uranium­(IV) derivatives <b>2-Bn</b>′ (<b>2-</b><i><b>p</b></i><b>-</b><sup><b><i>i</i></b></sup><b>Pr</b>,<b> 2-</b><i><b>p</b></i><b>-</b><sup><b><i>t</i></b></sup><b>Bu</b>,<b> 2-</b><i><b>p</b></i><b>-NMe</b><sub><b>2</b></sub>, <b>2-</b><i><b>p</b></i><b>-SMe</b>,<b> 2-</b><i><b>o</b></i><b>-Picolyl</b>, <b>2-</b><i><b>m</b></i><b>-OMe</b>, <b>2-</b><i><b>o</b></i><b>-OMe</b>). In addition to <sup>1</sup>H NMR spectroscopic characterization, structural studies of five of these organouranium compounds (<b>2-</b><i><b>p</b></i><b>-</b><sup><b><i>i</i></b></sup><b>Pr</b>,<b> 2-</b><i><b>p</b></i><b>-</b><sup><b><i>t</i></b></sup><b>Bu</b>,<b> 2-</b><i><b>o</b></i><b>-Picolyl</b>, <b>2-</b><i><b>m</b></i><b>-OMe</b>, <b>2-</b><i><b>o</b></i><b>-OMe</b>) were performed, showing that in many cases the benzyl groups are coordinated in an η<sup>4</sup>-fashion, lending stability to these otherwise low-coordinate molecules. In the cases of U­(<i>o-</i>OMeBn)<sub>4</sub> (<b>2-</b><i><b>o</b></i><b>-OMe</b>) and U­(2-picolyl)<sub>4</sub> (<b>2-</b><i><b>o</b></i><b>-Picolyl</b>), heteroatom coordination to the uranium center is observed

    Synthesis, Characterization, and Stoichiometric U–O Bond Scission in Uranyl Species Supported by Pyridine(diimine) Ligand Radicals

    No full text
    Two uranium­(VI) uranyl compounds, Cp*UO<sub>2</sub>­(<sup>Mes</sup>PDI<sup>Me</sup>) (<b>3</b>) and Cp*UO<sub>2</sub>(<sup><i>t</i></sup>Bu-<sup>Mes</sup>PDI<sup>Me</sup>) (<b>3-</b><sup><i><b>t</b></i></sup><b>Bu</b>) (Cp* = 1,2,3,4,5-pentamethylcyclopentadienide; <sup>Mes</sup>PDI<sup>Me</sup> = 2,6-((Mes)­N=CMe)<sub>2</sub>C<sub>5</sub>H<sub>3</sub>N; <sup><i>t</i></sup>Bu-<sup>Mes</sup>PDI<sup>Me</sup> = 2,6-((Mes)­N=CMe)<sub>2</sub>-<i>p</i>-C­(CH<sub>3</sub>)<sub>3</sub>C<sub>5</sub>H<sub>2</sub>N; Mes = 2,4,6-trimethylphenyl), have been synthesized by addition of <i>N</i>-methylmorpholine <i>N</i>-oxide to trianionic pyridine­(diimine) uranium­(IV) precursors, Cp*U­(<sup>Mes</sup>PDI<sup>Me</sup>)­(THF) (<b>1</b>), Cp*U­(<sup>Mes</sup>PDI<sup>Me</sup>)­(HMPA) (<b>1-HMPA</b>), and Cp*U­(<sup><i>t</i></sup>Bu-<sup>Mes</sup>PDI<sup>Me</sup>)­(THF) (<b>1-</b><sup><i><b>t</b></i></sup><b>Bu</b>). These uranyl complexes contain singly reduced pyridine­(diimine) ligands suggesting formation occurs via cooperative ligand/metal oxidation. Treating <b>3</b> or <b>3-</b><sup><i><b>t</b></i></sup><b>Bu</b> with stoichiometric equivalents of Me<sub>3</sub>SiI results in stepwise oxo silylation to form (Me<sub>3</sub>SiO)<sub>2</sub>UI<sub>2</sub>(<sup>Mes</sup>PDI<sup>Me</sup>) (<b>5</b>) or (Me<sub>3</sub>SiO)­UI<sub>2</sub>(<sup><i>t</i></sup>Bu-<sup>Mes</sup>PDI<sup>Me</sup>) (<b>5-</b><sup><i><b>t</b></i></sup><b>Bu</b>), respectively. Additional equivalents result in full uranium–oxo bond scission and formation of UI<sub>4</sub>(1,4-dioxane)<sub>2</sub> with extrusion of hexamethyldisiloxane. The uranium complexes have been characterized via multinuclear NMR, vibrational, and electronic absorption spectroscopies and, in some cases, X-ray crystallography
    corecore