465 research outputs found

    Composite Fermions and quantum Hall systems: Role of the Coulomb pseudopotential

    Full text link
    The mean field composite Fermion (CF) picture successfully predicts angular momenta of multiplets forming the lowest energy band in fractional quantum Hall (FQH) systems. This success cannot be attributed to a cancellation between Coulomb and Chern-Simons interactions beyond the mean field, because these interactions have totally different energy scales. Rather, it results from the behavior of the Coulomb pseudopotential V(L) (pair energy as a function of pair angular momentum) in the lowest Landau level (LL). The class of short range repulsive pseudopotentials is defined that lead to short range Laughlin like correlations in many body systems and to which the CF model can be applied. These Laughlin correlations are described quantitatively using the formalism of fractional parentage. The discussion is illustrated with an analysis of the energy spectra obtained in numerical diagonalization of up to eleven electrons in the lowest and excited LL's. The qualitative difference in the behavior of V(L) is shown to sometimes invalidate the mean field CF picture when applied to higher LL's. For example, the nu=7/3 state is not a Laughlin nu=1/3 state in the first excited LL. The analysis of the involved pseudopotentials also explains the success or failure of the CF picture when applied to other systems of charged Fermions with Coulomb repulsion, such as the Laughlin quasiparticles in the FQH hierarchy or charged excitons in an electron-hole plasma.Comment: 27 pages, 23 figures, revised version (significant changes in text and figures), submitted to Phil. Mag.

    Spin phase diagram of the nu_e=4/11 composite fermion liquid

    Full text link
    Spin polarization of the "second generation" nu_e=4/11 fractional quantum Hall state (corresponding to an incompressible liquid in a one-third-filled composite fermion Landau level) is studied by exact diagonalization. Spin phase diagram is determined for GaAs structures of different width and electron concentration. Transition between the polarized and partially unpolarized states with distinct composite fermion correlations is predicted for realistic parameters.Comment: 5 pages, 3 figure

    Magnon Localization in Mattis Glass

    Full text link
    We study the spectral and transport properties of magnons in a model of a disordered magnet called Mattis glass, at vanishing average magnetization. We find that in two dimensional space, the magnons are localized with the localization length which diverges as a power of frequency at small frequencies. In three dimensional space, the long wavelength magnons are delocalized. In the delocalized regime in 3d (and also in 2d in a box whose size is smaller than the relevant localization length scale) the magnons move diffusively. The diffusion constant diverges at small frequencies. However, the divergence is slow enough so that the thermal conductivity of a Mattis glass is finite, and we evaluate it in this paper. This situation can be contrasted with that of phonons in structural glasses whose contribution to thermal conductivity is known to diverge (when inelastic scattering is neglected).Comment: 11 page

    Residual interactions and correlations among Laughlin quasiparticles: Novel hierarchy states

    Full text link
    The residual interactions between Laughlin quasiparticles can be obtained from exact numerical diagonalization studies of small systems. The pseudopotentials V_QP(R)$ describing the energy of interaction of QE's (or QH's) as a function of their "relative angular momentum" R cannot support Laughlin correlations at certain QP filling factors (e.g., nu_QE}=1/3 and nu_QH=1/5). Because of this the novel condensed quantum fluid states observed at nu=4/11, 4/13 and other filling fractions cannot possibly be spin polarized Laughlin correlated QP states of the composite Fermion hierarchy. Pairing of the QP's clearly must occur, but the exact nature of the incompressible ground states is not completely clear.Comment: 5 pages, 2 figures, accepted for Solid State Commu

    Strong Correlation to Weak Correlation Phase Transition in Bilayer Quantum Hall Systems

    Get PDF
    At small layer separations, the ground state of a nu=1 bilayer quantum Hall system exhibits spontaneous interlayer phase coherence and has a charged-excitation gap E_g. The evolution of this state with increasing layer separation d has been a matter of controversy. In this letter we report on small system exact diagonalization calculations which suggest that a single phase transition, likely of first order, separates coherent incompressible (E_g >0) states with strong interlayer correlations from incoherent compressible states with weak interlayer correlations. We find a dependence of the phase boundary on d and interlayer tunneling amplitude that is in very good agreement with recent experiments.Comment: 4 pages, 4 figures included, version to appear in Phys. Rev. Let

    Two Experimental Tests of the Halperin-Lubensky-Ma Effect at the Nematic-Smectic-A Phase Transition

    Get PDF
    We have conducted two quantitative tests of predictions based on the Halperin-Lubensky-Ma (HLM) theory of fluctuation-induced first-order phase transitions. First, we explore the effect of an external magnetic field on the nematic-smectic-A (NA) transition in a liquid crystal. Second, we examine the dependence of the first-order discontinuity as a function of mixture concentration in pure 8CB and three 8CB-10CB mixtures. We find the first quantitative evidence for deviations from the HLM theory.Comment: 4 pages, 2 figure

    Sex positivity and the persistence of shame

    Get PDF
    This essay considers how we make sense of the persistence of shame in the 20th anniversary year of Sexualities and a broader contemporary context in which the discourse of sex positivity has become predominant? This is an important moment in the development of the field to consider the status of sexual shame, not least because the discourse of sex positivity produces a call to action predicated on a repudiation of shame; shame as regressive, ignorant, reactionary and politically suspect

    Strong enhancement of drag and dissipation at the weak- to strong- coupling phase transition in a bi-layer system at a total Landau level filling nu=1

    Full text link
    We consider a bi-layer electronic system at a total Landau level filling factor nu =1, and focus on the transition from the regime of weak inter-layer coupling to that of the strongly coupled (1,1,1) phase (or ''quantum Hall ferromagnet''). Making the assumption that in the transition region the system is made of puddles of the (1,1,1) phase embedded in a bulk of the weakly coupled state, we show that the transition is accompanied by a strong increase in longitudinal Coulomb drag, that reaches a maximum of approximately h/2e2h/2e^{2}. In that regime the longitudinal drag is increased with decreasing temperature.Comment: four pages, one included figur

    Systematic 1/S study of the 2D Hubbard model at half-filling

    Full text link
    The 2D Hubbard model is extended by placing 2S orbitals at each lattice site and studied in a systematic 1/S expansion. The 1/S results for the magnetic susceptibility and the spectra of spin-wave excitations at half-filling are consistent with the large S calculations for the Heisenberg antiferromagnet. The 1/S corrections to the fermionic spectrum lift the degeneracy along the edge of the magnetic Brillouin zone yielding minima at (+- pi/2, +- pi/2). Relation to previous papers on the subject is discussed.Comment: 18 pages, emTex version 3.
    corecore