3,476 research outputs found

    J.S. Bell's Concept of Local Causality

    Full text link
    John Stewart Bell's famous 1964 theorem is widely regarded as one of the most important developments in the foundations of physics. It has even been described as "the most profound discovery of science." Yet even as we approach the 50th anniversary of Bell's discovery, its meaning and implications remain controversial. Many textbooks and commentators report that Bell's theorem refutes the possibility (suggested especially by Einstein, Podolsky, and Rosen in 1935) of supplementing ordinary quantum theory with additional ("hidden") variables that might restore determinism and/or some notion of an observer-independent reality. On this view, Bell's theorem supports the orthodox Copenhagen interpretation. Bell's own view of his theorem, however, was quite different. He instead took the theorem as establishing an "essential conflict" between the now well-tested empirical predictions of quantum theory and relativistic \emph{local causality}. The goal of the present paper is, in general, to make Bell's own views more widely known and, in particular, to explain in detail Bell's little-known mathematical formulation of the concept of relativistic local causality on which his theorem rests. We thus collect and organize many of Bell's crucial statements on these topics, which are scattered throughout his writings, into a self-contained, pedagogical discussion including elaborations of the concepts "beable", "completeness", and "causality" which figure in the formulation. We also show how local causality (as formulated by Bell) can be used to derive an empirically testable Bell-type inequality, and how it can be used to recapitulate the EPR argument.Comment: 19 pages, 4 figure

    A Numerical Method for General Relativistic Magnetohydrodynamics

    Full text link
    This paper describes the development and testing of a general relativistic magnetohydrodynamic (GRMHD) code to study ideal MHD in the fixed background of a Kerr black hole. The code is a direct extension of the hydrodynamic code of Hawley, Smarr, and Wilson, and uses Evans and Hawley constrained transport (CT) to evolve the magnetic fields. Two categories of test cases were undertaken. A one dimensional version of the code (Minkowski metric) was used to verify code performance in the special relativistic limit. The tests include Alfv\'en wave propagation, fast and slow magnetosonic shocks, rarefaction waves, and both relativistic and non-relativistic shock tubes. A series of one- and two-dimensional tests were also carried out in the Kerr metric: magnetized Bondi inflow, a magnetized inflow test due to Gammie, and two-dimensional magnetized constant-ll tori that are subject to the magnetorotational instability.Comment: 37 pages, 14 figures, submitted to ApJ. Animations can be viewed at http://www.astro.virginia.edu/~jd5v/grmhd/grmhd.htm

    The de Broglie Wave as a Localized Excitation of the Action Function

    Full text link
    The Hamilton-Jacobi equation of relativistic quantum mechanics is revisited. The equation is shown to permit solutions in the form of breathers (nondispersive oscillating/spinning solitons), displaying simultaneous particle-like and wave-like behavior adaptable to the properties of the de Broglie clock. Within this formalism the de Broglie wave acquires the meaning of a localized excitation of the classical action function. The problem of quantization in terms of the breathing action function is discussed.Comment: 11 page

    Surface Electromagnetic Waves with Damping. II. Anisotropic Media

    Get PDF
    The Technique of Plotting the Attenuated-Total-Reflection (ATR) Reflectance as a Function of Both Frequency and Incident Angle using a Three-Dimensional Plot is Applied to Surface Electromagnetic Waves (SEW) in a Uniaxial Material, MnF2. It is Shown that Dispersion Curves Calculated Without Absorption Do Not Completely Describe the ATR Reflectivity. Experimental Data Confirming the Reflectance Surface Features Are Presented. Also, Additional Minima in the Reflectance Surface Not Associated with SEW Are Discussed. Ā© 1977 the American Physical Society

    A Dark Spot on a Massive White Dwarf

    Get PDF
    We present the serendipitous discovery of eclipse-like events around the massive white dwarf SDSS J152934.98+292801.9 (hereafter J1529+2928). We selected J1529+2928 for time-series photometry based on its spectroscopic temperature and surface gravity, which place it near the ZZ Ceti instability strip. Instead of pulsations, we detect photometric dips from this white dwarf every 38 minutes. Follow-up optical spectroscopy observations with Gemini reveal no significant radial velocity variations, ruling out stellar and brown dwarf companions. A disintegrating planet around this white dwarf cannot explain the observed light curves in different filters. Given the short period, the source of the photometric dips must be a dark spot that comes into view every 38 min due to the rotation of the white dwarf. Our optical spectroscopy does not show any evidence of Zeeman splitting of the Balmer lines, limiting the magnetic field strength to B<70 kG. Since up to 15% of white dwarfs display kG magnetic fields, such eclipse-like events should be common around white dwarfs. We discuss the potential implications of this discovery on transient surveys targeting white dwarfs, like the K2 mission and the Large Synoptic Survey Telescope.Comment: ApJ Letters, in pres
    • ā€¦
    corecore