186 research outputs found

    Church attendance and alloparenting: an analysis of fertility, social support and child development among English mothers

    Get PDF
    Many aspects of religious rituals suggest they provide adaptive benefits. Studies across societies consistently find that investments in ritual behaviour return high levels of cooperation. Another line of research finds that alloparental support to mothers increases maternal fertility and improves child outcomes. Although plausible, whether religious cooperation extends to alloparenting and/or affects child development remains unclear. Using 10 years of data collected from the Avon Longitudinal Study of Parents and Children (ALSPAC), we test the predictions that church attendance is positively associated with social support and fertility (n = 8207 to n = 8209), and that social support is positively associated with fertility and child development (n = 1766 to n = 6561). Results show that: (i) relative to not attending, church attendance is positively related to a woman's social network support and aid from co-religionists, (ii) aid from co-religionists is associated with increased family size, while (iii) fertility declines with extra-religious social network support. Moreover, while extra-religious social network support decreased over time, co-religionist aid remained constant. These findings suggest that religious and secular networks differ in their longevity and have divergent influences on a woman's fertility. We find some suggestive evidence that support to mothers and aid from co-religionists is positively associated with a child's cognitive ability at later stages of development. Findings provide mixed support for the premise that ritual, such as church attendance, is part of a strategy that returns high levels of support, fertility and improved child outcomes. Identifying the diversity and scope of cooperative breeding strategies across global religions presents an intriguing new horizon in the evolutionary study of religious systems. This article is part of the theme issue 'Ritual renaissance: new insights into the most human of behaviours'

    The Galactic Distribution of Large HI Shells

    Full text link
    We report the discovery of nineteen new HI shells in the Southern Galactic Plane Survey (SGPS). These shells, which range in radius from 40 pc to 1 kpc, were found in the low resolution Parkes portion of the SGPS dataset, covering Galactic longitudes l=253 deg to l=358 deg. Here we give the properties of individual shells, including positions, physical dimensions, energetics, masses, and possible associations. We also examine the distribution of these shells in the Milky Way and find that several of the shells are located between the spiral arms of the Galaxy. We offer possible explanations for this effect, in particular that the density gradient away from spiral arms, combined with the many generations of sequential star formation required to create large shells, could lead to a preferential placement of shells on the trailing edges of spiral arms. Spiral density wave theory is used in order to derive the magnitude of the density gradient behind spiral arms. We find that the density gradient away from spiral arms is comparable to that out of the Galactic plane and therefore suggest that this may lead to exaggerated shell expansion away from spiral arms and into interarm regions.Comment: 25 pages, 20 embedded EPS figures, uses emulateapj.sty, to appear in the Astrophysical Journa

    Stellar Iron Abundances at the Galactic Center

    Get PDF
    We present measurements of [Fe/H] for six M supergiant stars and three giant stars within 0.5 pc of the Galactic Center (GC) and one M supergiant star within 30 pc of the GC. The results are based on high-resolution (lambda / Delta lambda =40,000) K-band spectra, taken with CSHELL at the NASA Infrared Telescope Facility.We determine the iron abundance by detailed abundance analysis,performed with the spectral synthesis program MOOG.The mean [Fe/H] of the GC stars is determined to be near solar,[Fe/H] = +0.12 ±\pm 0.22. Our analysis is a differential analysis, as we have observed and applied the same analysis technique to eleven cool, luminous stars in the solar neighborhood with similar temperatures and luminosities as the GC stars. The mean [Fe/H] of the solar neighborhood comparison stars, [Fe/H] = +0.03 ±\pm 0.16, is similar to that of the GC stars. The width of the GC [Fe/H] distribution is found to be narrower than the width of the [Fe/H] distribution of Baade's Window in the bulge but consistent with the width of the [Fe/H] distribution of giant and supergiant stars in the solar neighborhood.Comment: 41 pages, 9 figures, ApJ, in pres

    Planetary Nebulae as standard candles XI. Application to Spiral Galaxies

    Get PDF
    We report the results of an [O III] lambda 5007 survey for planetary nebulae (PN) in three spiral galaxies: M101 (NGC 5457), M51 (NGC 5194/5195) and M96 (NGC 3368). By comparing on-band/off-band [O III] lambda 5007 images with images taken in H-alpha and broadband R, we identify 65, 64 and 74 PN candidates in each galaxy, respectively. From these data, an adopted M31 distance of 770 kpc, and the empirical planetary nebula luminosity function (PNLF), we derive distances to M101, M51, and M96 of 7.7 +/- 0.5, 8.4 +/- 0.6, and 9.6 +/- 0.6 Mpc. These observations demonstrate that the PNLF technique can be successfully applied to late-type galaxies, and provide an important overlap between the Population I and Population II distance scales. We also discuss some special problems associated with using the PNLF in spiral galaxies, including the effects of dust and the possible presence of [O III] bright supernova remnants.Comment: 38 pages, TeX, with tables included but not figures. Uses epsf.tex and kpnobasic.tex. To be published in the Astophysical Journal. Full paper is available at http://www.astro.psu.edu/users/johnf/Text/research.htm

    The Structure of the Oxygen-rich Supernova Remnant G292.0+1.8 from Chandra X-ray Images: Shocked Ejecta and Circumstellar Medium

    Get PDF
    We present results from the observation of the young Galactic supernova remnant (SNR) G292.0+1.8 with the Advanced CCD Imaging Spectrometer (ACIS) on board the {\it Chandra X-ray Observatory}. In the 0.3 −- 8 keV band, the high resolution ACIS images reveal a complex morphology consisting of knots and filaments, as well as the blast wave around the periphery of the SNR. We present equivalent width (EW) maps for the elemental species O, Ne, Mg, and Si, which allow us to identify regions of enhanced metallicity in the SNR. G292.0+1.8 is bright in O, Ne, and Si; weaker in S and Ar; with little Fe. The EW and broad-band images indicate that the metal-rich ejecta are distributed primarily around the periphery of the SNR. The central belt-like structure has normal solar-type composition, strongly suggesting that it is primarily emission from shocked circumstellar medium rather than metal-rich ejecta. We propose that the belt traces its origin to enhanced mass loss in the star's equatorial plane during the slow, red supergiant phase. We also identify thin filaments with normal composition, centered on and extending nearly continuously around the outer boundary of the SNR. These may originate in a shell caused by the stellar winds from the massive progenitor in the red/blue supergiant phases, over-run by the blast wave.Comment: 5 pages, 2 color images, Accepted by ApJ Letters, The full article with better-quality figures can be obtained at http://www.astro.psu.edu/users/park/g292_1.ps.g

    Cross section and longitudinal single-spin asymmetry AL for forward W± → Ό±Μ production in polarized p+p collisions at √s=510 GeV

    Get PDF
    We have measured the cross section and single-spin asymmetries from forward W±→Ό±Μ production in longitudinally polarized p+p collisions at √s=510  GeV using the PHENIX detector at the Relativistic Heavy Ion Collider. The cross sections are consistent with previous measurements at this collision energy, while the most forward and backward longitudinal single spin asymmetries provide new insights into the sea quark helicities in the proton. The charge of the W bosons provides a natural flavor separation of the participating partons

    Measurement of parity-violating spin asymmetries in W-+/- production at midrapidity in longitudinally polarized p plus p collisions

    Get PDF
    We present midrapidity measurements from the PHENIX experiment of large parity-violating single-spin asymmetries of high transverse momentum electrons and positrons from W-+/-/Z decays, produced in longitudinally polarized p + p collisions at center of mass energies of root s = 500 and 510 GeV. These asymmetries allow direct access to the antiquark polarized parton distribution functions due to the parity-violating nature of the W-boson coupling to quarks and antiquarks. The results presented are based on data collected in 2011, 2012, and 2013 with an integrated luminosity of 240 pb(-1), which exceeds previous PHENIX published results by a factor of more than 27. These high Q(2) data probe the parton structure of the proton at W mass scale and provide an important addition to our understanding of the antiquark parton helicity distribution functions at an intermediate Bjorken x value of roughly M-W / root s = 0.16

    phi meson production in the forward/backward rapidity region in Cu plus Au collisions at root s(NN)=200 GeV

    Get PDF
    The PHENIX experiment at the Relativistic Heavy Ion Collider has measured phi meson production and its nuclear modification in asymmetric Cu + Au heavy-ion collisions at root s(NN) = 200 GeV at both forward Cu-going direction (1.2 \u3c y \u3c 2.2) and backward Au-going direction (-2.2 \u3c y \u3c -1.2) rapidities. The measurements are performed via the dimuon decay channel and reported as a function of the number of participating nucleons, rapidity, and transverse momentum. In the most central events, 0%-20% centrality, the phi meson yield integrated over 1 \u3c pT \u3c 5 GeV/c prefers a smaller value, which means a larger nuclear modification, in the Cu-going direction compared to the Au-going direction. Additionally, the nuclear-modification factor in Cu + Au collisions averaged over all centrality is measured to be similar to the previous PHENIX result in d + Au collisions for these rapidities

    Planetary Nebulae as Standard Candles. XII. Connecting the Population I and Population II Distance Scales

    Full text link
    We report the results of [OIII] lambda 5007 surveys for planetary nebulae (PNe) in NGC 2403, 3115, 3351, 3627, 4258, and 5866. Using on-band/off-band [OIII] and H-alpha images, we identify samples of PNe in these galaxies and derive distances using the planetary nebula luminosity function (PNLF). We then combine these measurements with previous data to compare the PNLF, Cepheid, and surface brightness fluctuation (SBF) distance scales. We use a sample of 13 galaxies to show that the absolute magnitude of the PNLF cutoff is fainter in small, low-metallicity systems, but the trend is well modelled theoretically. When this dependence is removed, the scatter between the Cepheid and PNLF distances becomes consistent with the internal errors of the methods and independent of any obvious galaxy parameter. We then use the data to recalibrate the zero point of the PNLF distance scale. We use a sample of 28 galaxies to show that the scatter between the PNLF and SBF distance measurements agrees with that predicted from the techniques' internal errors, and that no systematic trend exists between the distance residuals and stellar population. However, we find the PNLF and SBF methods have a significant scale offset: Cepheid-calibrated PNLF distances are, on average, ~0.3 mag smaller than Cepheid-calibrated SBF distances. We discuss the possible causes of this offset, and suggest that internal extinction in the bulges of the SBF calibration galaxies is the principle cause of the discrepancy. If this is correct, the SBF-based Hubble Constant must be increased by ~7%. We use our distance to NGC 4258 to argue that the short distance scale to the LMC is correct, and that the global Hubble Constant inferred from the HST Key Project should be increased by 8 +/- 3% to H_0 = 78 +/- 7 km/s/Mpc. (abridged)Comment: 38 pages, 9 figures included, accepted for publication in the Astrophysical Journa
    • 

    corecore