1,521 research outputs found
Barrier island breach evolution : alongshore transport and bay-ocean pressure gradient interactions
Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 8720–8730, doi:10.1002/2016JC012029.Physical processes controlling repeated openings and closures of a barrier island breach between a bay and the open ocean are studied using aerial photographs and atmospheric and hydrodynamic observations. The breach site is located on Pea Island along the Outer Banks, separating Pamlico Sound from the Atlantic Ocean. Wind direction was a major control on the pressure gradients between the bay and the ocean to drive flows that initiate or maintain the breach opening. Alongshore sediment flux was found to be a major contributor to breach closure. During the analysis period from 2011 to 2016, three hurricanes had major impacts on the breach. First, Hurricane Irene opened the breach with wind-driven flow from bay to ocean in August 2011. Hurricane Sandy in October 2012 quadrupled the channel width from pressure gradient flows due to water levels that were first higher on the ocean side and then higher on the bay side. The breach closed sometime in Spring 2013, most likely due to an event associated with strong alongshore sediment flux but minimal ocean-bay pressure gradients. Then, in July 2014, Hurricane Arthur briefly opened the breach again from the bay side, in a similar fashion to Irene. In summary, opening and closure of breaches are shown to follow a dynamic and episodic balance between along-channel pressure gradient driven flows and alongshore sediment fluxes.2017-06-1
Response and encoding factors in ignoring irrelevant information
Subjects classified either the numerosity or numeric value of elements in successive stimulus displays. In separate experiments, responses were indicated by oral naming, card sorting, manual tapping, and oral tapping. Incongruent levels of numeric value slowed naming and sorting, but not tapping, when numerosity was the cue for responding. Incongruent numerosity slowed tapping, but not naming and sorting, when numeric value was the cue. Changes in stimulus response mapping may thus critically alter the ability to ignore an irrelevant stimulus dimension
Response and encoding factors in ignoring irrelevant information
Subjects classified either the numerosity or numeric value of elements in successive stimulus displays. In separate experiments, responses were indicated by oral naming, card sorting, manual tapping, and oral tapping. Incongruent levels of numeric value slowed naming and sorting, but not tapping, when numerosity was the cue for responding. Incongruent numerosity slowed tapping, but not naming and sorting, when numeric value was the cue. Changes in stimulus response mapping may thus critically alter the ability to ignore an irrelevant stimulus dimension
Observations and 3D hydrodynamics-based modeling of decadal-scale shoreline change along the Outer Banks, North Carolina
This paper is not subject to U.S. copyright. The definitive version was published in Coastal Engineering 120 (2017): 78-92, doi:10.1016/j.coastaleng.2016.11.014.Long-term decadal-scale shoreline change is an important parameter for quantifying the stability of coastal systems. The decadal-scale coastal change is controlled by processes that occur on short time scales (such as storms) and long-term processes (such as prevailing waves). The ability to predict decadal-scale shoreline change is not well established and the fundamental physical processes controlling this change are not well understood. Here we investigate the processes that create large-scale long-term shoreline change along the Outer Banks of North Carolina, an uninterrupted 60 km stretch of coastline, using both observations and a numerical modeling approach. Shoreline positions for a 24-yr period were derived from aerial photographs of the Outer Banks. Analysis of the shoreline position data showed that, although variable, the shoreline eroded an average of 1.5 m/yr throughout this period. The modeling approach uses a three-dimensional hydrodynamics-based numerical model coupled to a spectral wave model and simulates the full 24-yr time period on a spatial grid running on a short (second scale) time-step to compute the sediment transport patterns. The observations and the model results show similar magnitudes (O(105 m3/yr)) and patterns of alongshore sediment fluxes. Both the observed and the modeled alongshore sediment transport rates have more rapid changes at the north of our section due to continuously curving coastline, and possible effects of alongshore variations in shelf bathymetry. The southern section with a relatively uniform orientation, on the other hand, has less rapid transport rate changes. Alongshore gradients of the modeled sediment fluxes are translated into shoreline change rates that have agreement in some locations but vary in others. Differences between observations and model results are potentially influenced by geologic framework processes not included in the model. Both the observations and the model results show higher rates of erosion (∼−1 m/yr) averaged over the northern half of the section as compared to the southern half where the observed and modeled averaged net shoreline changes are smaller (<0.1 m/yr). The model indicates accretion in some shallow embayments, whereas observations indicate erosion in these locations. Further analysis identifies that the magnitude of net alongshore sediment transport is strongly dominated by events associated with high wave energy. However, both big- and small- wave events cause shoreline change of the same order of magnitude because it is the gradients in transport, not the magnitude, that are controlling shoreline change. Results also indicate that alongshore momentum is not a simple balance between wave breaking and bottom stress, but also includes processes of horizontal vortex force, horizontal advection and pressure gradient that contribute to long-term alongshore sediment transport. As a comparison to a more simple approach, an empirical formulation for alongshore sediment transport is used. The empirical estimates capture the effect of the breaking term in the hydrodynamics-based model, however, other processes that are accounted for in the hydrodynamics-based model improve the agreement with the observed alongshore sediment transport.This study was also supported by the United States Geological Survey Coastal Change Processes Project and Department of the Interior Hurricane Sandy Recovery program
Alongshore momentum balance analysis on a cuspate foreland
Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 118 (2013): 5280–5295, doi:10.1002/jgrc.20358.Nearshore measurements of waves and currents off Cape Hatteras, North Carolina, U.S.A, are used to investigate depth-averaged subtidal circulation and alongshore momentum balances in the surf and inner shelf region around a cuspate foreland. Data were collected on both sides of the cape representing shorefaces with contrasting shoreline orientation (north-south vs. northwest-southeast) subjected to the same wind forcing. In the nearshore, the subtidal flow is aligned with the local coastline orientation while at the cape point the flow is along the existing submerged shoal, suggesting that cape associated shoals may act as an extension of the coastline. Alongshore momentum balance analysis incorporating wave-current interaction by including vortex and Stokes-Coriolis forces reveals that in deep waters surface and bottom stress are almost in balance. In shallower waters, the balance is complex as nonlinear advection and vortex force become important. Furthermore, linearized momentum balance analysis suggests that the vortex force can be of the same order as wind and wave forcing. Farther southwest of Cape Hatteras point, wind and wave forcing alone fail to fully explain subtidal flow variability and it is shown that alongshore pressure gradient as a response to the wind forcing can close the momentum balance. Adjacent tide gauge data suggest that the magnitude of pressure gradient depends on the relative orientation of local coastline to the wind vector, and in a depth-averaged sense the pressure gradient generation due to change in coastline orientation even at km length scale is analogous to the effect of alongshore variable winds on a straight coastline.The experimental work was funded by the
Carolinas Coastal Processes Project, a cooperative study supported by the
US Geological Survey. Additional support during
data analysis and preparation of this manuscript was provided by the
National Science Foundation (award: OCE-1132130).2014-04-1
Spectroscopy of Seven Cataclysmic Variables with Periods Above Five Hours
We present spectroscopy of seven cataclysmic variable stars with orbital
periods P(orb) greater than 5 hours, all but one of which are known to be dwarf
novae. Using radial velocity measurements we improve on previous orbital period
determinations, or derive periods for the first time. The stars and their
periods are
TT Crt, 0.2683522(5) d;
EZ Del, 0.2234(5) d;
LL Lyr, 0.249069(4) d;
UY Pup, 0.479269(7) d;
RY Ser, 0.3009(4) d;
CH UMa, 0.3431843(6) d; and
SDSS J081321+452809, 0.2890(4) d.
For each of the systems we detect the spectrum of the secondary star,
estimate its spectral type, and derive a distance based on the surface
brightness and Roche lobe constraints. In five systems we also measure the
radial velocity curve of the secondary star, estimate orbital inclinations, and
where possible estimate distances based on the MV(max) vs.P(orb) relation found
by Warner. In concordance with previous studies, we find that all the secondary
stars have, to varying degrees, cooler spectral types than would be expected if
they were on the main sequence at the measured orbital period.Comment: 25 pages, 2 figures, accepted for Publications of the Astronomical
Society of the Pacifi
Flow convergence caused by a salinity minimum in a tidal channel
© 2006 The Author et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The definitive version was published in San Francisco Estuary and Watershed Science 4 (2006): Issue 3, Article 1.Residence times of dissolved substances and sedimentation rates in tidal channels are affected by residual (tidally averaged) circulation patterns. One influence on these circulation patterns is the longitudinal density gradient. In most estuaries the longitudinal density gradient typically maintains a constant direction. However, a junction of tidal channels can create a local reversal (change in sign) of the density gradient. This can occur due to a difference in the phase of tidal currents in each channel. In San Francisco Bay, the phasing of the currents at the junction of Mare Island Strait and Carquinez Strait produces a local salinity minimum in Mare Island Strait. At the location of a local salinity minimum the longitudinal density gradient reverses direction. This paper presents four numerical models that were used to investigate the circulation caused by the salinity minimum: (1) A simple one-dimensional (1D) finite difference model demonstrates that a local salinity minimum is advected into Mare Island Strait from the junction with Carquinez Strait during flood tide. (2) A three-dimensional (3D) hydrodynamic finite element model is used to compute the tidally averaged circulation in a channel that contains a salinity minimum (a change in the sign of the longitudinal density gradient) and compares that to a channel that contains a longitudinal density gradient in a constant direction. The tidally averaged circulation produced by the salinity minimum is characterized by converging flow at the bed and diverging flow at the surface, whereas the circulation produced by the constant direction gradient is characterized by converging flow at the bed and downstream surface currents. These velocity fields are used to drive both a particle tracking and a sediment transport model. (3) A particle tracking model demonstrates a 30 percent increase in the residence time of neutrally buoyant particles transported through the salinity minimum, as compared to transport through a constant direction density gradient. (4) A sediment transport model demonstrates increased deposition at the near-bed null point of the salinity minimum, as compared to the constant direction gradient null point. These results are corroborated by historically noted large sedimentation rates and a local maximum of selenium accumulation in clams at the null point in Mare Island Strait.The authors acknowledge support for this research
from the California Department of Fish and Game, the
California Coastal Conservancy, the U.S. Fish and
Wildlife Service Coastal Program, and the U.S.
Geological Survey Federal/State Cooperative and
Priority Ecosystem Science Programs
Photonic band structure of highly deformable, self-assembling systems
We calculate the photonic band structure at normal incidence of highly
deformable, self-assembling systems - cholesteric elastomers subjected to
external stress. Cholesterics display brilliant reflection and lasing owing to
gaps in their photonic band structure. The band structure of cholesteric
elastomers varies sensitively with strain, showing new gaps opening up and
shifting in frequency. A novel prediction of a total band gap is made, and is
expected to occur in the vicinity of the previously observed de Vries bandgap,
which is only for one polarisation
Localized soft elasticity in liquid crystal elastomers.
This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms10781Synthetic approaches to prepare designer materials that localize deformation, by combining rigidity and compliance in a single material, have been widely sought. Bottom-up approaches, such as the self-organization of liquid crystals, offer potential advantages over top-down patterning methods such as photolithographic control of crosslink density, relating to the ease of preparation and fidelity of resolution. Here, we report on the directed self-assembly of materials with spatial and hierarchical variation in mechanical anisotropy. The highly nonlinear mechanical properties of the liquid crystalline elastomers examined here enables strain to be locally reduced >15-fold without introducing compositional variation or other heterogeneities. Each domain (⩾0.01 mm(2)) exhibits anisotropic nonlinear response to load based on the alignment of the molecular orientation with the loading axis. Accordingly, we design monoliths that localize deformation in uniaxial and biaxial tension, shear, bending and crack propagation, and subsequently demonstrate substrates for globally deformable yet locally stiff electronics.T.H.W., A.F.S. and T.J.W. would like to acknowledge financial support from the Materials and Manufacturing Directorate and the Office of Scientific Research of the Air Force Research Laboratory
- …