2 research outputs found

    DataSheet_1_Joint spatiotemporal models to predict seabird densities at sea.docx

    No full text
    IntroductionSeabirds are abundant, conspicuous members of marine ecosystems worldwide. Synthesis of distribution data compiled over time is required to address regional management issues and understand ecosystem change. Major challenges when estimating seabird densities at sea arise from variability in dispersion of the birds, sampling effort over time and space, and differences in bird detection rates associated with survey vessel type.MethodsUsing a novel approach for modeling seabirds at sea, we applied joint dynamic species distribution models (JDSDM) with a vector-autoregressive spatiotemporal framework to survey data collected over nearly five decades and archived in the North Pacific Pelagic Seabird Database. We produced monthly gridded density predictions and abundance estimates for 8 species groups (77% of all birds observed) within Cook Inlet, Alaska. JDSDMs included habitat covariates to inform density predictions in unsampled areas and accounted for changes in observed densities due to differing survey methods and decadal-scale variation in ocean conditions. ResultsThe best fit model provided a high level of explanatory power (86% of deviance explained). Abundance estimates were reasonably precise, and consistent with limited historical studies. Modeled densities identified seasonal variability in abundance with peak numbers of all species groups in July or August. Seabirds were largely absent from the study region in either fall (e.g., murrelets) or spring (e.g., puffins) months, or both periods (shearwaters).DiscussionOur results indicated that pelagic shearwaters (Ardenna spp.) and tufted puffin (Fratercula cirrhata) have declined over the past four decades and these taxa warrant further investigation into underlying mechanisms explaining these trends. JDSDMs provide a useful tool to estimate seabird distribution and seasonal trends that will facilitate risk assessments and planning in areas affected by human activities such as oil and gas development, shipping, and offshore wind and renewable energy. </p

    Map of study area from Timing of ice retreat alters seabird abundances and distributions in the southeast Bering Sea

    No full text
    Timing of spring sea-ice retreat shapes the southeast Bering Sea food web. We compared summer seabird densities and average bathymetry depth-distributions between years with early (typically warm) and late (typically cold) ice-retreat. Averaged over all seabird species, densities in early-ice-retreat-years were 10.1% (95%CI: 1.1–47.9%) of that in late-ice-retreat-years. In early-ice-retreat-years, surface-foraging species had increased numbers over the middle shelf (50–150 m) and reduced numbers over the shelf slope (200–500 m). Pursuit-diving seabirds showed a less clear trend. Euphausiids and the copepod <i>Calanus marshallae/glacialis</i> were 2.4 and 18.1 times less abundant in early-ice-retreat-years, respectively, whereas age-0 walleye pollock <i>Gadus chalcogrammus</i> near-surface densities were 51× higher in early-ice-retreat-years. Our results suggest a mechanistic understanding of how present and future changes in sea-ice-retreat timing may affect top predators like seabirds in the southeastern Bering Sea
    corecore