3,129 research outputs found

    Probing the Circular Polarization of Relativistic Jets on VLBI Scales

    Get PDF
    High resolution studies of circular polarization allow us see where it arises in a jet, study its local fractional level and spectrum, and compare these results to local measures of linear polarization and Faraday rotation. Here we not only review past results from Very Long Baseline Array (VLBA) circular polarization studies, but we also present preliminary new results on two quasars. In the core of PKS 0607-157, we find strong circular polarization at 8 GHz and much weaker levels at 15 GHz. Combined with the linear polarization data, we favor a simple model where the circular is produced by Faraday conversion driven by a small amount of Faraday rotation. In the core of 3C345, we find strong circular polarization at 15 GHz in a component with distinct linear polarization. This core component is optically thick at 8 GHz, where we detect no circular polarization. With opposite trends in frequency for PKS 0607-157 and 3C345, it seems clear that local conditions in a jet can have a strong effect on circular polarization and need to be taken into account when studying inhomogeneous objects with multi-frequency observations.Comment: To appear in the proceedings of "Circular Polarization of Relativistic Jet Sources", eds R. P. Fender and J.-P. Macquart, in Astrophysics and Space Science. 11 pgs, 2 fig

    Theoretical Models for Producing Circularly Polarized Radiation in Extragalactic Radio Sources

    Full text link
    We discuss the production of circular polarization in compact radio sources both by the intrinsic mechanism and by Faraday conversion. We pay particular attention to the magnetic field structure, considering partially ordered fiel ds and Laing sheets, and distinguishing between uniform and unidirectional fields. (The latter can be constrained b y flux conservation arguments.) In most cases, Faraday conversion is the more important mechanism. Conversion opera tes on Stokes U, which can be generated by internal Faraday rotation, or by magnetic field fluctuations, which can therefore produce circular polarization even in a pure pair plasma. We also show that the spectrum of circular pola rization in an inhomogeneous jet can be quite different from that in a uniform source, being flat or even inverted.Comment: To appear in the proceedings of "Circular Polarization of Relativistic Jet Sources", eds R. P. Fender and J.-P. Macquart, in Astrophysics and Space Science. 12 pgs, 0 fig

    VLA Observations of a Complete Sample of Radio Loud Quasars between redshifts 2.5 and 5.28: I. high-redshift sample summary and the radio images

    Full text link
    We present high resolution (arcsecond or better) observations made with the Karl G. Jansky Very Large Array of 123 radio-loud quasars with redshifts in the range 2.5≤z≤5.282.5 \leq z \leq 5.28 that form a complete flux limited sample (≥70\geq 70 mJy at 1.4 GHz or 5 GHz). Where possible, we used previous high resolution VLA observations (mainly A array at 1.4, 5 and 8 GHz) from the NRAO archive and re-imaged them (43 sources). For the remainder, new observations were made in the A array at 1.4 and 5 GHz. We show images of the 61 resolved sources, and list structural properties of all of them. Optical data from the SDSS are available for nearly every source. This work represents a significant increase in the number of high redshift quasars with published radio structures, and will be used to study the properties and evolution of luminous radio sources in the high redshift universe

    Concurrent 43 and 86 GHz Very Long Baseline Polarimetry of 3C273

    Full text link
    We present sub-milliarcsecond resolution total intensity and linear polarization VLBI images of 3C273, using concurrent 43 and 86 GHz data taken with the Very Long Baseline Array in May 2002. The structure seen in the innermost jet suggest that we have fortuitously caught the jet in the act of changing direction. The polarization images confirm that the core is unpolarized (fractional polarization m < 1 %) at 86 GHz, but also show well ordered magnetic fields (m ~ 15 %) in the inner jet, at a projected distance of 2.3 pc from the core. In this strongly polarized region, the rotation measure changes across the jet by 4.2 x 10^{4} rad m^{-2} over an angular width of about 0.3 milliarcseconds. If the lack of polarization in the core is also attributed to a Faraday screen, then a rotation measure dispersion > 5.2 x 10^{4} rad m^{-2} must be present in or in front of that region. These are among the highest rotation measures reported so far in the nucleus of any active galaxy or quasar, and must occur outside (but probably close to) the radio emitting region. The transverse rotation measure gradient is in the same sense as that observed by Asada et al and by Zavala and Taylor at greater core distances. The magnitude of the transverse gradient decreases rapidly with distance down the jet, and appears to be variable.Comment: 4 pages, LaTeX, 3 postscript figures, submitted to Astrophysical Journal Letter

    High Resolution Linear Polarimetric Imaging for the Event Horizon Telescope

    Get PDF
    Images of the linear polarization of synchrotron radiation around Active Galactic Nuclei (AGN) identify their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest resolution polarimetric images of AGN are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial frequencies will not be unique and reconstruction algorithms are required. In this paper, we explore extensions of the Maximum Entropy Method (MEM) to linear polarimetric VLBI imaging. In contrast to previous work, our polarimetric MEM algorithm combines a Stokes I imager that uses only bispectrum measurements that are immune to atmospheric phase corruption with a joint Stokes Q and U imager that operates on robust polarimetric ratios. We demonstrate the effectiveness of our technique on 7- and 3-mm wavelength quasar observations from the VLBA and simulated 1.3-mm Event Horizon Telescope observations of Sgr A* and M87. Consistent with past studies, we find that polarimetric MEM can produce superior resolution compared to the standard CLEAN algorithm when imaging smooth and compact source distributions. As an imaging framework, MEM is highly adaptable, allowing a range of constraints on polarization structure. Polarimetric MEM is thus an attractive choice for image reconstruction with the EHT.Comment: 19 pages, 9 figures. Accepted for publication in ApJ. Imaging code available at https://github.com/achael/eht-imaging

    Relative Astrometry of Compact Flaring Structures in Sgr A* with Polarimetric VLBI

    Full text link
    We demonstrate that polarimetric interferometry can be used to extract precise spatial information about compact polarized flares of Sgr A*. We show that, for a faint dynamical component, a single interferometric baseline suffices to determine both its polarization and projected displacement from the quiescent intensity centroid. A second baseline enables two-dimensional reconstruction of the displacement, and additional baselines can self-calibrate using the flare, enhancing synthesis imaging of the quiescent emission. We apply this technique to simulated 1.3-mm wavelength observations of a "hot spot" embedded in a radiatively inefficient accretion disk around Sgr A*. Our results indicate that, even with current sensitivities, polarimetric interferometry with the Event Horizon Telescope can achieve ~5 microarcsecond relative astrometry of compact flaring structures near Sgr A* on timescales of minutes.Comment: 9 Pages, 4 Figures, accepted for publication in Ap

    Radio Jet-Ambient Medium Interactions on Parsec Scales in the Blazar 1055+018

    Full text link
    As part of our study of the magnetic fields of AGN we have recently observed a large sample of blazars with the Very Long Baseline Array. Here we report the discovery of a striking two-component jet in the source 1055+018, consisting of an inner spine with a transverse magnetic field, and a fragmentary but distinct boundary layer with a longitudinal magnetic field. The polarization distribution in the spine strongly supports shocked-jet models while that in the boundary layer suggests interaction with the surrounding medium. This behavior suggests a new way to understand the differing polarization properties of strong- and weak-lined blazars.Comment: LaTex; 10 pages; 6 figures; reference fix; to appear in ApJL, 518, 1999 June 2
    • …
    corecore