22 research outputs found

    Toll-Like Receptors in Hepatic Ischemia/Reperfusion and Transplantation

    Get PDF
    The family of Toll-like receptors (TLRs) function as pattern-recognition receptors (PRRs) that respond to a myriad of highly conserved ligands. These substrates include pathogen-associated molecular patterns (PAMPs) for the recognition of invading pathogens, as well as damage-associated molecular patterns (DAMPs) for the recognition of endogenous tissue injury. While the functions of TLRs are diverse, they have received much attention for their roles in ischemia/reperfusion (I/R) injury of the liver and other organs. The TLRs play central roles in sensing tissue damage and activating the innate immune system following I/R. Engagement of TLRs by endogenous DAMPs activates proinflammatory signaling pathways leading to the production of cytokines, chemokines and further release of endogenous danger signals. This paper focuses on the most recent findings regarding TLR family members in hepatic I/R injury and transplantation

    Identification of Pharmacological Modulators of HMGB1-Induced Inflammatory Response by Cell-Based Screening

    Get PDF
    High mobility group box 1 (HMGB1), a highly conserved, ubiquitous protein, is released into the circulation during sterile inflammation (e.g. arthritis, trauma) and circulatory shock. It participates in the pathogenesis of delayed inflammatory responses and organ dysfunction. While several molecules have been identified that modulate the release of HMGB1, less attention has been paid to identify pharmacological inhibitors of the downstream inflammatory processes elicited by HMGB1 (C23-C45 disulfide C106 thiol form). In the current study, a cell-based medium-throughput screening of a 5000+ compound focused library of clinical drugs and drug-like compounds was performed in murine RAW264.7 macrophages, in order to identify modulators of HMGB1-induced tumor-necrosis factor alpha (TNFα) production. Clinically used drugs that suppressed HMGB1-induced TNFα production included glucocorticoids, beta agonists, and the anti-HIV compound indinavir. A re-screen of the NIH clinical compound library identified beta-agonists and various intracellular cAMP enhancers as compounds that potentiate the inhibitory effect of glucocorticoids on HMGB1-induced TNFα production. The molecular pathways involved in this synergistic anti-inflammatory effect are related, at least in part, to inhibition of TNFα mRNA synthesis via a synergistic suppression of ERK/IκB activation. Inhibition of TNFα production by prednisolone+salbutamol pretreatment was also confirmed in vivo in mice subjected to HMGB1 injection; this effect was more pronounced than the effect of either of the agents administered separately. The current study unveils several drug-like modulators of HMGB1-mediated inflammatory responses and offers pharmacological directions for the therapeutic suppression of inflammatory responses in HMGB1-dependent diseases. © 2013 Gerö et al

    Glucocorticoid use in acute respiratory failure from pulmonary causes and association with early changes in the systemic host immune response

    No full text
    Abstract Background Glucocorticoids are commonly used in patients with or at-risk for acute respiratory distress syndrome (ARDS), but optimal use remains unclear despite well-conducted clinical trials. We performed a secondary analysis in patients previously enrolled in the Acute Lung Injury and Biospecimen Repository at the University of Pittsburgh. The primary aim of our study was to investigate early changes in host response biomarkers in response to real-world use of glucocorticoids in patients with acute respiratory failure due to ARDS or at-risk due to a pulmonary insult. Participants had baseline plasma samples obtained on study enrollment and on follow-up 3 to 5 days later to measure markers of innate immunity (IL-6, IL-8, IL-10, TNFr1, ST2, fractalkine), epithelial injury (sRAGE), endothelial injury (angiopoietin-2), and host response to bacterial infections (procalcitonin, pentraxin-3). In our primary analyses, we investigated the effect of receiving glucocorticoids between baseline and follow-up samples on host response biomarkers measured at follow-up by doubly robust inverse probability weighting analysis. In exploratory analyses, we examined associations between glucocorticoid use and previously characterized host response subphenotypes (hyperinflammatory and hypoinflammatory). Results 67 of 148 participants (45%) received glucocorticoids between baseline and follow-up samples. Dose and type of glucocorticoids varied. Regimens that used hydrocortisone alone were most common (37%), and median daily dose was equivalent to 40 mg methylprednisolone (interquartile range: 21, 67). Participants who received glucocorticoids were more likely to be female, to be on immunosuppressive therapy at baseline, and to have higher baseline levels of ST-2, fractalkine, IL-10, pentraxin-3, sRAGE, and TNFr1. Glucocorticoid use was associated with decreases in IL-6 and increases in fractalkine. In exploratory analyses, glucocorticoid use was more frequent in participants in the hyperinflammatory subphenotype (58% vs 40%, p = 0.05), and was not associated with subphenotype classification at the follow-up time point (p = 0.16). Conclusions Glucocorticoid use varied in a cohort of patients with or at-risk for ARDS and was associated with early changes in the systemic host immune response

    Association of the systemic host immune response with acute hyperglycemia in mechanically ventilated septic patients.

    No full text
    Hyperglycemia during sepsis is associated with increased organ dysfunction and higher mortality. The role of the host immune response in development of hyperglycemia during sepsis remains unclear. We performed a retrospective analysis of critically ill adult septic patients requiring mechanical ventilation (n = 153) to study the relationship between hyperglycemia and ten markers of the host injury and immune response measured on the first day of ICU admission (baseline). We determined associations between each biomarker and: (1) glucose, insulin, and c-peptide levels at the time of biomarker collection by Pearson correlation; (2) average glucose and glycemic variability in the first two days of ICU admission by linear regression; and (3) occurrence of hyperglycemia (blood glucose>180mg/dL) by logistic regression. Results were adjusted for age, pre-existing diabetes mellitus, severity of illness, and total insulin and glucocorticoid dose. Baseline plasma levels of ST2 and procalcitonin were positively correlated with average blood glucose and glycemic variability in the first two days of ICU admission in unadjusted and adjusted analyses. Additionally, higher baseline ST2, IL-1ra, procalcitonin, and pentraxin-3 levels were associated with increased risk of hyperglycemia. Our results suggest associations between the host immune response and hyperglycemia in critically ill septic patients particularly implicating the interleukin-1 axis (IL-1ra), the interleukin-33 axis (ST2), and the host response to bacterial infections (procalcitonin, pentraxin-3)

    Additional file 1 of Glucocorticoid use in acute respiratory failure from pulmonary causes and association with early changes in the systemic host immune response

    No full text
    Additional file 1: Table S1. Prior studies of glucocorticoid use in patients with acute respiratory distress syndrome (ARDS) or at-risk for ARDS due to severe pneumonia. Table S2. Conversion table for glucocorticoids [17]. Table S3. Clinical characteristics of ARDS and patients at-risk from a pulmonary insult who were excluded due to biomarker availability compared to patients who were included. Table S4. Clinical characteristics comparing patients with ARDS and patients at-risk for ARDS from a pulmonary insult included in the study. Table S5. Clinical characteristics comparing patients by pre-existing immunosuppression status. Table S6. Clinical characteristics by type(s) of glucocorticoid administered between baseline and follow-up samples. Table S7. Systemic host immune response biomarkers measured at follow-up time point. Table S8. Sensitivity analyses of the association between glucocorticoid use and systemic host immune response biomarkers at follow-up. Table S9. Clinical characteristics by host response subphenotype at baseline. Table S10. Clinical characteristics by host response subphenotype and receipt of glucocorticoids. Table S11. Sensitivity analyses of the association between glucocorticoid use and systemic host immune response biomarkers at follow-up in the hypoinflammatory phenotype subgroup. Table S12. Sensitivity analyses of the association between glucocorticoid use and systemic host immune response biomarkers at follow-up in the hyperinflammatory phenotype subgroup. Figure S1. Kaplan–Meier curves for 90-day survival and liberation from mechanical ventilation. Survival curves are adjusted for propensity score. Adjusted hazard ratio for survival (HR 0.96 [95% CI 0.46–2.01], p = 0.908) and time to liberation (HR 1.03 [95% CI 0.68–1.54, p = 0.905]) did not suggest differences between groups. Hazard ratio generated from Cox proportional hazard modeling with robust regression and proportional hazards assumption tested and not violated in both cases
    corecore