208 research outputs found

    RAPID TRANSPORT OF PROTEIN IN THE OPTIC SYSTEM OF THE GOLDFISH 1

    Full text link
    Several amino acids, particularly [ 3 H]proline and [ 3 H]asparagine specifically and efficiently labelled rapidly transported proteins in the goldfish optic nerve and tectum after intraocular injection. Studies with these amino acids showed that the rapidly transported proteins moved as a discrete band at a rate which was temperature-dependent, and was equal to 70-100 mm per day at 20°C. Transported protein in the optic tectum was 80 per cent particulate and was found in synaptosomal, mitochondrial, and myelin fractions, but not in purified nuclei or ribosomes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66053/1/j.1471-4159.1971.tb11965.x.pd

    Internal flow measurements of the SSME fuel preburner injector element using real time neutron radiography

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77098/1/AIAA-1990-2293-658.pd

    Fabrication and Testing of Low Cost 2D Carbon-Carbon Nozzle Extensions at NASA/MSFC

    Get PDF
    Subscale liquid engine tests were conducted at NASA/MSFC using a 1.2 Klbf engine with liquid oxygen (LOX) and gaseous hydrogen. Testing was performed for main-stage durations ranging from 10 to 160 seconds at a chamber pressure of 550 psia and a mixture ratio of 5.7. Operating the engine in this manner demonstrated a new and affordable test capability for evaluating subscale nozzles by exposing them to long duration tests. A series of 2D C-C nozzle extensions were manufactured, oxidation protection applied and then tested on a liquid engine test facility at NASA/MSFC. The C-C nozzle extensions had oxidation protection applied using three very distinct methods with a wide range of costs and process times: SiC via Polymer Impregnation & Pyrolysis (PIP), Air Plasma Spray (APS) and Melt Infiltration. The tested extensions were about 6" long with an exit plane ID of about 6.6". The test results, material properties and performance of the 2D C-C extensions and attachment features will be discussed

    AXONAL TRANSPORT AND TURNOVER OF PROLINE- AND LEUCINE-LABELED PROTEIN IN THE GOLDFISH VISUAL SYSTEM

    Full text link
    The suitability of radioactively labeled proline as a marker of axonally transported protein in the goldfish visual system is further investigated and compared with another amino acid, leucine, in double-label experiments. Intraocularly injected proline is incorporated into protein in the eye S times more efficiently than is leucine, while local labeling of brain protein from precursor which has left the eye and entered the blood, (observed in the ipsilateral optic tectum) is five- to eight-fold less from proline than from leucine. The difference is attributed to the superior transport of leucine, an essential amino acid, into the brain from the blood. Once in the brain, the apparent rates of incorporation of the two amino acids are similar. Proline- or leucine-labeled, axonally transported proteins have a longer apparent half-life in the brain than do proteins labeled from intracranial injection of the precursors. By either route, proline-labeled proteins have a longer apparent half-life than leucine-labeled proteins. It is proposed that proline, released from protein breakdown is reutilized to a greater extent than is leucine.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65647/1/j.1471-4159.1974.tb10757.x.pd

    Characterizing Microfluidic Operations Underlying an Electrowetting Heat Pipe on the International Space Station

    Get PDF
    Electrowetting heat pipes (EHPs) are a newly conceptualized class of heat pipes, wherein the adiabatic wick section is replaced by electrowetting-based pumping of the condensate (as droplets) to the evaporator. Specific advantages include the ability to transport high heat loads over long distances, low thermal resistance and power consumption, and the absence of moving mechanical parts. In this work, we describe characterization of key microfluidic operations (droplet motion and splitting) underlying the EHP on the International Space Station (ISS). The testing was performed under the Advanced Passive Thermal eXperiment (APTx) project, a project to test a suite of passive thermal control devices funded by the ISS Technology Demonstration Office at NASA JSC (Johnson Space Center). A rapid manufacturing method was used to fabricate the electrowetting device on a printed circuit board. Key device-related considerations were to ensure reliability and package the experimental hardware within a confined space. Onboard the ISS, experiments were conducted to study electrowetting-based droplet motion and droplet splitting, by imaging droplet manipulation operations via pre-programmed electrical actuation sequences. An applied electric field of 36 Volts per micron resulted in droplet speeds approaching 10 millimeters per second. Droplet splitting dynamics were observed and the time required to split droplets was quantified. Droplet motion data was analyzed to estimate the contact line friction coefficient. Overall, this demonstration is the first-ever electrowetting experiment in space. The obtained results are useful for future design of the EHP and other electrowetting-based systems for microgravity applications

    Prenatal cocaine effects on brain structure in early infancy

    Get PDF
    Prenatal cocaine exposure (PCE) is related to subtle deficits in cognitive and behavioral function in infancy, childhood and adolescence. Very little is known about the effects of in utero PCE on early brain development that may contribute to these impairments. The purpose of this study was to examine brain structural differences in infants with and without PCE. We conducted MRI scans of newborns (mean age = 5 weeks) to determine cocaine's impact on early brain structural development. Subjects were three groups of infants: 33 with PCE co-morbid with other drugs, 46 drug-free controls and 40 with prenatal exposure to other drugs (nicotine, alcohol, marijuana, opiates, SSRIs) but without cocaine. Infants with PCE exhibited lesser total gray matter (GM) volume and greater total cerebral spinal fluid (CSF) volume compared with controls and infants with non-cocaine drug exposure. Analysis of regional volumes revealed that whole brain GM differences were driven primarily by lesser GM in prefrontal and frontal brain regions in infants with PCE, while more posterior regions (parietal, occipital) did not differ across groups. Greater CSF volumes in PCE infants were present in prefrontal, frontal and parietal but not occipital regions. Greatest differences (GM reduction, CSF enlargement) in PCE infants were observed in dorsal prefrontal cortex. Results suggest that PCE is associated with structural deficits in neonatal cortical gray matter, specifically in prefrontal and frontal regions involved in executive function and inhibitory control. Longitudinal study is required to determine whether these early differences persist and contribute to deficits in cognitive functions and enhanced risk for drug abuse seen at school age and in later life
    • …
    corecore