218 research outputs found

    The Creation and Propagation of Radiation: Fields Inside and Outside of Sources

    Get PDF
    We present a new algorithm for computing the electromagnetic fields of currents inside and outside of finite current sources, for arbitrary time variations in the currents. Unexpectedly, we find that our solutions for these fields are free of the concepts of differential calculus, in that our solutions only involve the currents and their time integrals, and do not involve the time derivatives of the currents. As examples, we give the solutions for two configurations of current: a planar solenoid and a rotating spherical shell carrying a uniform charge density. For slow time variations in the currents, we show that our general solutions reduce to the standard expressions for the fields in classic magnetic dipole radiation. In the limit of extremely fast turn-on of the currents, we show that for our general solutions the amount of energy radiated is exactly equal to the magnetic energy stored in the static fields a long time after current creation. We give three associated problem statements which can be used in courses at the undergraduate level, and one problem statement suitable for courses at the graduate level. These problems are of physical interest because: (1) they show that current systems of finite extent can radiate even during time intervals when the currents are constant; (2) they explicitly display transit time delays across a source associated with its finite dimensions; and (3) they allow students to see directly the origin of the reaction forces for time-varying systemsComment: 25 pages, 5 figure

    Detailed analysis of low energy plasma data under the Voyager Uranus data analysis program

    Get PDF
    Research effort included the PLS data analysis program where modifications to the data fitting procedure and elimination of possible noise and electron contamination were made. The analysis code corrections were used in checking the Neptune data gathered during the Voyager 2 encounter and for analyzing selected plasma spectra from the warm Io torus. A major task accomplished was the summary of Uranus-related research in the U.S. National Report to the International Union of Geodesy and Geophysics for the 1987 - 1990 quadrennium. A limited amount of work was accomplished on assessing the Pedersen conductivity of the ionosphere and comparing it with inferred values from shielding by the Uranian ring current. Under this grant there has been a great deal of effort expended on identifying and classifying plasma waves and oscillations in the magnetosheath and solar wind downstream from Uranus. Large amplitude oscillations in plasma parameters are found in the magnetosheath, with density changes of up to a factor of ten occurring on times scales of minutes. New algorithms developed for analyzing the inbound bow shock crossing of Neptune will probably be applied to a more detailed analysis of the Uranus shock in the near future

    Voyager 2 Observations of Plasma and Pressure Pulses

    Get PDF
    This paper provides the latest data from Voyager 2 on plasma characteristics in the heliosheath including the observations of pressure waves in the plasma and particle data. Models and observations show that solar transients drive pressure waves through the heliosphere. Pressure pulses that could drive heliosheath waves are observed near the previous solar maximum upstream of the termination shock. We show that the most recent data is consistent with the presence of pressure waves and compare the heliosheath waves with the pressure increases in the heliosheath. The magnetic field is better correlated with density and galactic cosmic ray intensities in the supersonic solar wind than in the heliosheath. The galactic cosmic rays are correlated with the plasma and particles with a ~30-day lag in both the supersonic wind and heliosheath

    PLASMA HEATING INSIDE INTERPLANETARY CORONAL MASS EJECTIONS BY ALFVÉNIC FLUCTUATIONS DISSIPATION

    Get PDF
    Nonlinear cascade of low-frequency Alfvénic fluctuations (AFs) is regarded as one of the candidate energy sources that heat plasma during the non-adiabatic expansion of interplanetary coronal mass ejections (ICMEs). However, AFs inside ICMEs were seldom reported in the literature. In this study, we investigate AFs inside ICMEs using observations from Voyager 2 between 1 and 6 au. It has been found that AFs with a high degree of Alfvénicity frequently occurred inside ICMEs for almost all of the identified ICMEs (30 out of 33 ICMEs) and for 12.6% of the ICME time interval. As ICMEs expand and move outward, the percentage of AF duration decays linearly in general. The occurrence rate of AFs inside ICMEs is much less than that in ambient solar wind, especially within 4.75 au. AFs inside ICMEs are more frequently presented in the center and at the boundaries of ICMEs. In addition, the proton temperature inside ICME has a similar "W"-shaped distribution. These findings suggest significant contribution of AFs on local plasma heating inside ICMEs

    Voyager 2 Observations Near the Heliopause

    Get PDF
    This paper discusses plasma characteristics in the heliosheath region before the heliopause (HP), at the HP, and in the very local interstellar medium (VLISM). The Voyager 2 (V2) HP was a sharp boundary where the radial plasma currents went to background levels. The radial flow speeds derived from 53-85 keV (V1) and 28-43 keV (V2) ion data decreased about 2 years (8 AU) before the HP at V1 and V2. A speed decrease was not observed by the V2 plasma instrument until 160 days (1.5 AU) before the HP crossing when V2 entered the plasma boundary layer where the plasma density and 28-43 keV ion intensity increased. We determine the HP orientation based on the plasma flow and magnetic field data and show these observations are consistent with models predicting a blunt HP. Variations are observed in the currents observed in the VLISM; roll data from this region clearly show the plasma instrument observes the interstellar plasma and may be consistent with larger than expected VLISM temperatures near the HP

    Voyager 2 Observations Near the Heliopause

    Get PDF
    This paper discusses plasma characteristics in the heliosheath region before the heliopause (HP), at the HP, and in the very local interstellar medium (VLISM). The Voyager 2 (V2) HP was a sharp boundary where the radial plasma currents went to background levels. The radial flow speeds derived from 53-85 keV (V1) and 28-43 keV (V2) ion data decreased about 2 years (8 AU) before the HP at V1 and V2. A speed decrease was not observed by the V2 plasma instrument until 160 days (1.5 AU) before the HP crossing when V2 entered the plasma boundary layer where the plasma density and 28-43 keV ion intensity increased. We determine the HP orientation based on the plasma flow and magnetic field data and show these observations are consistent with models predicting a blunt HP. Variations are observed in the currents observed in the VLISM; roll data from this region clearly show the plasma instrument observes the interstellar plasma and may be consistent with larger than expected VLISM temperatures near the HP

    Comparison of electromagnetic and gravitational radiation: What we can learn about each from the other

    Get PDF
    We compare the nature of electromagnetic fields and gravitational fields in linearized general relativity. We carry out this comparison both mathematically and visually. In particular, the “lines of force” visualizations of electromagnetism are contrasted with the recently introduced tendex/vortex eigenline technique for visualizing gravitational fields. Specific solutions, visualizations, and comparisons are given for an oscillating point quadrupole source. Among the similarities illustrated are the quasistatic nature of the near fields, the transverse 1/r nature of the far fields, and the interesting intermediate field structures connecting these two limiting forms. Among the differences illustrated are the meaning of field line motion and of the flow of energy

    Voyager 2 Observations of Plasma and Pressure Pulses

    Get PDF
    This paper provides the latest data from Voyager 2 on plasma characteristics in the heliosheath including the observations of pressure waves in the plasma and particle data. Models and observations show that solar transients drive pressure waves through the heliosphere. Pressure pulses that could drive heliosheath waves are observed near the previous solar maximum upstream of the termination shock. We show that the most recent data is consistent with the presence of pressure waves and compare the heliosheath waves with the pressure increases in the heliosheath. The magnetic field is better correlated with density and galactic cosmic ray intensities in the supersonic solar wind than in the heliosheath. The galactic cosmic rays are correlated with the plasma and particles with a ~30-day lag in both the supersonic wind and heliosheath

    Hardware Design Improvements to the Major Constituent Analyzer

    Get PDF
    The Major Constituent Analyzer (MCA) onboard the International Space Station (ISS) is designed to monitor the major constituents of the ISS's internal atmosphere. This mass spectrometer based system is an integral part of the Environmental Control and Life Support System (ECLSS) and is a primary tool for the management of ISS atmosphere composition. As a part of NASA Change Request CR10773A, several alterations to the hardware have been made to accommodate improved MCA logistics. First, the ORU 08 verification gas assembly has been modified to allow the verification gas cylinder to be installed on orbit. The verification gas is an essential MCA consumable that requires periodic replenishment. Designing the cylinder for subassembly transport reduces the size and weight of the maintained item for launch. The redesign of the ORU 08 assembly includes a redesigned housing, cylinder mounting apparatus, and pneumatic connection. The second hardware change is a redesigned wiring harness for the ORU 02 analyzer. The ORU 02 electrical connector interface was damaged in a previous on-orbit installation, and this necessitated the development of a temporary fix while a more permanent solution was developed. The new wiring harness design includes flexible cable as well as indexing fasteners and guide-pins, and provides better accessibility during the on-orbit maintenance operation. This presentation will describe the hardware improvements being implemented for MCA as well as the expected improvement to logistics and maintenance

    Reply to Dr. Lai regarding Allopurinol Hypersensitivity Syndrome in patients of Asian ancestry

    Get PDF
    We thank Dr Lai for their interest in our study (1). While we did not show a statistically significant link between the use of allopurinol and mortality in people with gout, we agree that Allopurinol Hypersensitivity Syndrome (AHS) is the most serious side-effect of allopurinol, particularly in populations with South East Asian ancestry, leading to the recommendation to screen people of South East Asian descent for the HLA-B*5801 allele prior to starting treatment with allopurinol (2,3)
    corecore