10,564 research outputs found
Symmetric bilinear forms and vertices in characteristic 2
Let be a finite group and let be an algebraically closed field of
characteristic and let be an indecomposable -module which affords a
non-degenerate -invariant symmetric bilinear form. We introduce the
symmetric vertices of . Each of these is a -subgroup of which
contains a Green vertex of with index at most . If is irreducible
then its symmetric vertices are determined up to -conjugacy.
If is the real -block of containing , we show that each
symmetric vertex of is contained in an extended defect group of .
Moreover, we characterise the extended defect groups in terms of symmetric
vertices.
In order to prove these results, we develop the theory of involutary
-algebras. This allows us to translate questions about symmetric
-modules into questions about projective modules of quadratic type.Comment: Changes from v2: erroneous Lemma 2.3 (on lifting idempotents)
corrected. Consequent minor changes made to the rest of the paper. Table of
contents remove
Robust nonlinear control of vectored thrust aircraft
An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations
Bioinspired auditory sound localisation for improving the signal to noise ratio of socially interactive robots
In this paper we describe a bioinspired hybrid architecture for acoustic sound source localisation and tracking to increase the signal to noise ratio (SNR) between speaker and background sources for a socially interactive robot's speech recogniser system. The model presented incorporates the use of Interaural Time Differ- ence for azimuth estimation and Recurrent Neural Net- works for trajectory prediction. The results are then pre- sented showing the difference in the SNR of a localised and non-localised speaker source, in addition to presenting the recognition rates between a localised and non-localised speaker source. From the results presented in this paper it can be seen that by orientating towards the sound source of interest the recognition rates of that source can be in- creased
Optimal stopping times for estimating Bernoulli parameters with applications to active imaging
We address the problem of estimating the parameter of a Bernoulli process. This arises in many applications, including photon-efficient active imaging where each illumination period is regarded as a single Bernoulli trial. We introduce a framework within which to minimize the mean-squared error (MSE) subject to an upper bound on the mean number of trials. This optimization has several simple and intuitive properties when the Bernoulli parameter has a beta prior. In addition, by exploiting typical spatial correlation using total variation regularization, we extend the developed framework to a rectangular array of Bernoulli processes representing the pixels in a natural scene. In simulations inspired by realistic active imaging scenarios, we demonstrate a 4.26 dB reduction in MSE due to the adaptive acquisition, as an average over many independent experiments and invariant to a factor of 3.4 variation in trial budget.Accepted manuscrip
Nested sampling for Potts models
Nested sampling is a new Monte Carlo method by Skilling [1] intended for general Bayesian computation. Nested sampling provides a robust alternative to annealing-based methods for computing normalizing constants. It can also generate estimates of other quantities such as posterior expectations. The key technical requirement is an ability to draw samples uniformly from the prior subject to a constraint on the likelihood. We provide a demonstration with the Potts model, an undirected graphical model
Beyond Binomial and Negative Binomial: Adaptation in Bernoulli Parameter Estimation
Estimating the parameter of a Bernoulli process arises in many applications,
including photon-efficient active imaging where each illumination period is
regarded as a single Bernoulli trial. Motivated by acquisition efficiency when
multiple Bernoulli processes are of interest, we formulate the allocation of
trials under a constraint on the mean as an optimal resource allocation
problem. An oracle-aided trial allocation demonstrates that there can be a
significant advantage from varying the allocation for different processes and
inspires a simple trial allocation gain quantity. Motivated by realizing this
gain without an oracle, we present a trellis-based framework for representing
and optimizing stopping rules. Considering the convenient case of Beta priors,
three implementable stopping rules with similar performances are explored, and
the simplest of these is shown to asymptotically achieve the oracle-aided trial
allocation. These approaches are further extended to estimating functions of a
Bernoulli parameter. In simulations inspired by realistic active imaging
scenarios, we demonstrate significant mean-squared error improvements: up to
4.36 dB for the estimation of p and up to 1.80 dB for the estimation of log p.Comment: 13 pages, 16 figure
- …