37 research outputs found

    Glyphosate Results Revisited

    Get PDF

    Timing of androgen deprivation therapy use and fracture risk among elderly men with prostate cancer in the United States

    Full text link
    Purpose Fractures are a recognized consequence of androgen deprivation therapy (ADT); however, less is known about the incidence of fracture in relation to the timing of ADT use or the impact of fracture on mortality in men with prostate cancer. Methods Using data from the Surveillance, Epidemiology, and End Results–Medicare linked database, we estimated adjusted hazard ratios (aHRs) using time‐dependent Cox regression for fracture incidence related to the recency of exposure and dose among prostate cancer patients on gonadotropin‐releasing hormone (GnRH) agonists, as well as mortality associated with fractures. Results In our cohort of 80 844 patients, ADT was associated with an increased rate of fracture in both non‐metastatic patients (aHR = 1.34; 95% confidence interval [CI] = 1.29–1.39) and metastatic patients (aHR = 1.51; 95%CI = 1.36–1.67). Fracture rates increased with increasing cumulative GnRH dose but decreased with increasing number of months since last use in each dose category. The mortality rate doubled for men experiencing a fracture after their diagnosis compared with that for men who did not experience a fracture (aHR = 2.05; 95%CI = 1.98–2.12). Conclusions ADT in elderly men with prostate cancer increased the incidence of fractures, and the effect appears to diminish with increasing time since the last dose of a GnRH agonist. Experiencing a fracture after the diagnosis of prostate cancer was associated with decreased survival. Copyright © 2011 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90397/1/pds2258.pd

    Registry-Based Cohort Study of Alpha-1 Antitrypsin Deficiency Prevalence, Incidence and Mortality in Denmark 2000-2018

    Get PDF
    OBJECTIVE: To estimate the prevalence of diagnosed alpha-1 antitrypsin deficiency (dAATD) in Denmark as of 31 December 2018, and dAATD incidence and mortality from 1 January 2000 to 31 December 2018. STUDY DESIGN AND SETTING: We used the Danish National Patient Registry to identify patients with dAATD based on the International Classification of Diseases, 10th Revision (ICD-10) code E88.0A and the Danish Civil Registration System (CRS) for population counts and vital status. We estimated dAATD prevalence, incidence and mortality. We compared mortality among patients with dAATD and an age-matched and sex-matched cohort extracted from the Danish CRS. We conducted a sensitivity analysis to examine whether coding changes during 2000-2018, from a general to a more specific ICD-10 code for AATD, and left truncation affected results appreciably. RESULTS: The prevalence of dAATD was 12.9 (95% CI 11.9 to 13.8) per 100 000 persons. The age distribution was bimodal, with peaks at ages ≤12 and ≥45 years. The incidence rate per 100 000 person-years was 0.90 (95% CI 0.85 to 0.96), again with a bimodal age distribution. Mortality was higher for patients with dAATD than for the general population (mortality rate ratio (mRR) 4.7, 95% CI 4.1 to 5.3), especially for children (mRR 33.8, 95% CI 6.8 to 167.4). The sensitivity analysis indicated that dAATD prevalence might have been as high as 19.7 per 100 000 persons due to less specific ICD-10 coding for AATD early in the study period or 21.4 per 100 000 persons correcting for left truncation. CONCLUSION: Diagnosed AATD was associated with increased mortality, especially for children. The finding for children was based on few deaths and had very wide 95% CIs

    Biomonitoring of 2,4-Dichlorophenoxyacetic Acid Exposure and Dose in Farm Families

    Get PDF
    OBJECTIVE: We estimated 2,4-dichlorophenoxyacetic acid (2,4-D) exposure and systemic dose in farm family members following an application of 2,4-D on their farm. METHODS: Farm families were recruited from licensed applicators in Minnesota and South Carolina. Eligible family members collected all urine during five 24-hr intervals, 1 day before through 3 days after an application of 2,4-D. Exposure profiles were characterized with 24-hr urine 2,4-D concentrations, which then were related to potential predictors of exposure. Systemic dose was estimated using the urine collections from the application day through the third day after application. RESULTS: Median urine 2,4-D concentrations at baseline and day after application were 2.1 and 73.1 μ g/L for applicators, below the limit of detection, and 1.2 μ g/L for spouses, and 1.5 and 2.9 μ g/L for children. The younger children (4–11 years of age) had higher median post-application concentrations than the older children (≥ 12 years of age) (6.5 vs. 1.9 μ g/L). The geometric mean systemic doses (micrograms per kilogram body weight) were 2.46 (applicators), 0.8 (spouses), 0.22 (all children), 0.32 (children 4–11 years of age), and 0.12 (children ≥ 12 years of age). Exposure to the spouses and children was primarily determined by direct contact with the application process and the number of acres treated. Multivariate models identified glove use, repairing equipment, and number of acres treated as predictors of exposure in the applicators. CONCLUSIONS: We observed considerable heterogeneity of 2,4-D exposure among farm family members, primarily attributable to level of contact with the application process. Awareness of this variability and the actual magnitude of exposures are important for developing exposure and risk characterizations in 2,4-D–exposed agricultural populations
    corecore