4,533 research outputs found
The Spectroscopic Age of 47 Tuc
High signal-to-noise integrated spectra of the metal-rich globular cluster 47
Tuc, spanning the H-gamma(HR) and Fe4668 line indices, have been obtained. The
combination of these indices has been suggested (Jones & Worthey 1995, ApJ,
446, L31) as the best available mechanism for cleanly separating the
age-metallicity degeneracy which hampers the dating of distant, unresolved,
elliptical galaxies. For the first time, we apply this technique to a nearby
spheroidal system, 47 Tuc, for which independent ages, based upon more
established methods, exist. Such an independent test of the technique's
suitability has not been attempted before, but is an essential one before its
application to more distant, unresolved, stellar populations can be considered
valid. Because of its weak series of Balmer lines, relative to model spectra,
our results imply a spectroscopic ``age'' for 47 Tuc well in excess of 20 Gyr,
at odds with the colour-magnitude diagram age of 14+/-1 Gyr. The derived metal
abundance, however, is consistent with the known value. Emission ``fill-in'' of
the H-gamma line as the source of the discrepancy cannot be entirely excluded
by existing data, although the observational constraints are restrictive.Comment: 17 pages, 4 figures, LaTeX, accepted for publication in The
Astronomical Journal, also available at
http://casa.colorado.edu/~bgibson/publications.htm
Scotland Registry for Ankylosing Spondylitis (SIRAS) â Protocol
Funding SIRAS was funded by unrestricted grants from Pfizer and AbbVie. The project was reviewed by both companies, during the award process, for Scientific merit, to ensure that the design did not compromise patient safety, and to assess the global regulatory implications and any impact on regulatory strategy.Publisher PD
The HST Key Project on the Extragalactic Distance Scale XXVI. The Calibration of Population II Secondary Distance Indicators and the Value of the Hubble Constant
A Cepheid-based calibration is derived for four distance indicators that
utilize stars in the old stellar populations: the tip of the red giant branch
(TRGB), the planetary nebula luminosity function (PNLF), the globular cluster
luminosity function (GCLF) and the surface brightness fluctuation method (SBF).
The calibration is largely based on the Cepheid distances to 18 spiral galaxies
within cz =1500 km/s obtained as part of the HST Key Project on the
Extragalactic Distance Scale, but relies also on Cepheid distances from
separate HST and ground-based efforts. The newly derived calibration of the SBF
method is applied to obtain distances to four Abell clusters in the velocity
range between 3800 and 5000 km/s, observed by Lauer et al. (1998) using the
HST/WFPC2. Combined with cluster velocities corrected for a cosmological flow
model, these distances imply a value of the Hubble constant of H0 = 69 +/- 4
(random) +/- 6 (systematic) km/s/Mpc. This result assumes that the Cepheid PL
relation is independent of the metallicity of the variable stars; adopting a
metallicity correction as in Kennicutt et al. (1998), would produce a (5 +/-
3)% decrease in H0. Finally, the newly derived calibration allows us to
investigate systematics in the Cepheid, PNLF, SBF, GCLF and TRGB distance
scales.Comment: Accepted for publication in the Astrophysical Journal. 48 pages
(including 13 figures and 4 tables), plus two additional tables in landscape
format. Also available at http://astro.caltech.edu/~lff/pub.htm K' SBF
magnitudes have been update
Globular Cluster and Galaxy Formation: M31, the Milky Way and Implications for Globular Cluster Systems of Spiral Galaxies
The globular cluster (GC) systems of the Milky Way and of our neighboring
spiral galaxy, M31, comprise 2 distinct entities, differing in 3 respects. 1.
M31 has young GCs, ages from ~100 Myr to 5 Gyr old, as well as old globular
clusters. No such young GCs are known in the Milky Way. 2. We confirm that the
oldest M31 GCs have much higher nitrogen abundances than do Galactic GCs at
equivalent metallicities. 3. Morrison et al. found M31 has a subcomponent of
GCs that follow closely the disk rotation curve of M31. Such a GC system in our
own Galaxy has yet to be found. These data are interpreted in terms of the
hierarchical-clustering-merging (HCM) paradigm for galaxy formation. We infer
that M31 has absorbed more of its dwarf systems than has the Milky Way. This
inference has 3 implications: 1. All spiral galaxies likely differ in their GC
properties, depending on how many companions each galaxy has, and when the
parent galaxy absorbs them. The the Milky Way ties down one end of this
spectrum, as almost all of its GCs were absorbed 10-12 Gyr ago. 2. It suggests
that young GCs are preferentially formed in the dwarf companions of parent
galaxies, and then absorbed by the parent galaxy during mergers. 3. Young GCs
seen in tidally-interacting galaxies might come from dwarf companions of these
galaxies, rather than be made a-new in the tidal interaction. There is no ready
explanation for the marked difference in nitrogen abundance for old M31 GCs
relative to the oldest Galactic GCs. The predictions made by Li & Burstein
regarding the origin of nitrogen abundance in globular clusters are consistent
with what is found for the old M31 GCs compared to that for the two 5 Gyr-old
M31 GCs.Comment: to be published in ApJ, Oct 2004; 13 pages of text, 2 tables, 7
postscript figure
The solvation and dissociation of 4-benzylaniline hydrochloride in chlorobenzene
A reaction scheme is proposed to account for the liberation of 4-benzylaniline from 4-benzylaniline hydrochloride, using chlorobenzene as a solvent at a temperature of 373 K. Two operational regimes are explored: âclosedâ reaction conditions correspond to the retention of evolved hydrogen chloride gas within the reaction medium, whereas an âopenâ system permits gaseous hydrogen chloride to be released from the reaction medium. The solution phase chemistry is analyzed by 1H NMR spectroscopy. Complete liberation of solvated 4-benzylaniline from solid 4-benzylaniline hydrochloride is possible under âopenâ conditions, with the entropically favored conversion of solvated hydrogen chloride to the gaseous phase thought to be the thermodynamic driver that effectively controls a series of interconnecting equilibria. A kinetic model is proposed to account for the observations of the open system
The HST Key Project on the Extragalactic Distance Scale XXV. A Recalibration of Cepheid Distances to Type Ia Supernovae and the Value of the Hubble Constant
Cepheid-based distances to seven Type Ia supernovae (SNe)-host galaxies have
been derived using the standard HST Key Project on the Extragalactic Distance
Scale pipeline. For the first time, this allows for a transparent comparison of
data accumulated as part of three different HST projects, the Key Project, the
Sandage et al. Type Ia SNe program, and the Tanvir et al. Leo I Group study.
Re-analyzing the Tanvir et al. galaxy and six Sandage et al. galaxies we find a
mean (weighted) offset in true distance moduli of 0.12+/-0.07 mag -- i.e., 6%
in linear distance -- in the sense of reducing the distance scale, or
increasing H0. Adopting the reddening-corrected Hubble relations of Suntzeff et
al. (1999), tied to a zero point based upon SNe~1990N, 1981B, 1998bu, 1989B,
1972E and 1960F and the photometric calibration of Hill et al. (1998), leads to
a Hubble constant of H0=68+/-2(random)+/-5(systematic) km/s/Mpc. Adopting the
Kennicutt et al. (1998) Cepheid period-luminosity-metallicity dependency
decreases the inferred H0 by 4%. The H0 result from Type Ia SNe is now in good
agreement, to within their respective uncertainties, with that from the
Tully-Fisher and surface brightness fluctuation relations.Comment: Accepted for publication in The Astrophysical Journal. 62 pages,
LaTeX, 9 Postscript figures. Also available at
http://casa.colorado.edu/~bgibson/publications.htm
The HST Key Project on the Extragalactic Distance Scale. XXII. The Discovery of Cepheids in NGC 1326-A
We report on the detection of Cepheids and the first distance measurement to
the spiral galaxy NGC 1326-A, a member of the Fornax cluster of galaxies. We
have employed data obtained with the Wide Field and Planetary Camera 2 on board
the Hubble Space Telescope. Over a 49 day interval, a total of twelve V-band
(F555W) and eight I-band (F814W) epochs of observation were obtained. Two
photometric reduction packages, ALLFRAME and DoPHOT, have been employed to
obtain photometry measures from the three Wide Field CCDs. Variability analysis
yields a total of 17 Cepheids in common with both photometry datasets, with
periods ranging between 10 and 50 days. Of these 14 Cepheids with high-quality
lightcurves are used to fit the V and I period-luminosity relations and derive
apparent distance moduli, assuming a Large Magellanic Cloud distance modulus
(m-M) (LMC) = 18.50 +- 0.10 mag and color excess E(B-V) = 0.10 mag. Assuming
A(V)/E(V-I) = 2.45, the DoPHOT data yield a true distance modulus to NGC 1326-A
of (m-M)_0 = 31.36 +- 0.17 (random) +- 0.13 (systematic) mag, corresponding to
a distance of 18.7 \pm 1.5 (random) \pm 1.2 (systematic) Mpc. The derived
distance to NGC 1326-A is in good agreement with the distance derived
previously to NGC 1365, another spiral galaxy member of the Fornax cluster.
However the distances to both galaxies are significantly lower than to NGC
1425, a third Cepheid calibrator in the outer parts of the cluster.Comment: 33 pages A gzipped tar file containing 12 figures can be obtained
from http://www.ipac.caltech.edu/H0kp/n1326a/n1326a.htm
The HST Key Project on the Extragalactic Distance Scale. XXVIII. Combining the Constraints on the Hubble Constant
Since the launch of the Hubble Space Telescope nine years ago, Cepheid
distances to 25 galaxies have been determined for the purpose of calibrating
secondary distance indicators. A variety of these can now be calibrated, and
the accompanying papers by Sakai, Kelson, Ferrarese, and Gibson employ the full
set of 25 galaxies to consider the Tully-Fisher relation, the fundamental plane
of elliptical galaxies, Type Ia supernovae, and surface brightness
fluctuations.
When calibrated with Cepheid distances, each of these methods yields a
measurement of the Hubble constant and a corresponding measurement uncertainty.
We combine these measurements in this paper, together with a model of the
velocity field, to yield the best available estimate of the value of H_0 within
the range of these secondary distance indicators and its uncertainty.
The result is H_0 = 71 +/- 6 km/sec/Mpc. The largest contributor to the
uncertainty of this 67% confidence level result is the distance of the Large
Magellanic Cloud, which has been assumed to be 50 +/- 3 kpc
History, College of Medicine: 1959-1968. Chapter 2: College Administration
Prepared for the Centennial of The Ohio State University
- âŠ