20 research outputs found

    Comparison of an ultra-low volume (ULV) sprayer against a conventional sprayer, for foliar fertiliser and fungicide applications in turfgrass

    Get PDF
    Two field studies (I and II) at the University of Nebraska-Lincoln: John Seaton Anderson Turfgrass Research Facility near Mead, NE, USA, were conducted to determine if a new ultra-low volume (ULV) sprayer can apply foliar nutrient, growth regulator, and fungicide treatments, in a manner similar to that of a conventional sprayer. Treatments were applied over creeping bentgrass ‘L-93’ (Agrostis stolonifera L.) managed as a fairway at 561 l · ha−1 and 47 l · ha−1 with the conventional and ULV sprayer, respectfully. Data were collected for chlorophyll content with a chlorophyll meter, and for the normalised difference vegetation index (NDVI) with a turf colour meter. Each plot was harvested for biomass at 21 days after treatment. Study II compared the ULV sprayer and a conventional sprayer, for the control of brown patch (Rhizoctonia solani Kuhn) in creeping bentgrass. The treatments were propiconazole and azoxystrobin. Spray volume was 561 l · ha−1 for the conventional sprayer, and 19 l · ha−1 for the ULV sprayer. Statistical differences in turf quality or dry weight reductions between the conventional and ULV sprayer were not detected. Brown patch control was also similar between the two sprayers, but azoxystrobin provided better control than propiconazole. Even with a 30-fold decrease in application volume, the results indicated that the Kamterter ULV sprayer may be a useful and effective management option for foliar fertiliser and fungicide applications in turfgrass

    Comparison of an ultra-low volume (ULV) sprayer against a conventional sprayer, for foliar fertiliser and fungicide applications in turfgrass

    Get PDF
    Two field studies (I and II) at the University of Nebraska-Lincoln: John Seaton Anderson Turfgrass Research Facility near Mead, NE, USA, were conducted to determine if a new ultra-low volume (ULV) sprayer can apply foliar nutrient, growth regulator, and fungicide treatments, in a manner similar to that of a conventional sprayer. Treatments were applied over creeping bentgrass ‘L-93’ (Agrostis stolonifera L.) managed as a fairway at 561 l · ha−1 and 47 l · ha−1 with the conventional and ULV sprayer, respectfully. Data were collected for chlorophyll content with a chlorophyll meter, and for the normalised difference vegetation index (NDVI) with a turf colour meter. Each plot was harvested for biomass at 21 days after treatment. Study II compared the ULV sprayer and a conventional sprayer, for the control of brown patch (Rhizoctonia solani Kuhn) in creeping bentgrass. The treatments were propiconazole and azoxystrobin. Spray volume was 561 l · ha−1 for the conventional sprayer, and 19 l · ha−1 for the ULV sprayer. Statistical differences in turf quality or dry weight reductions between the conventional and ULV sprayer were not detected. Brown patch control was also similar between the two sprayers, but azoxystrobin provided better control than propiconazole. Even with a 30-fold decrease in application volume, the results indicated that the Kamterter ULV sprayer may be a useful and effective management option for foliar fertiliser and fungicide applications in turfgrass

    Response of Peas (Pisum sativum L.) to Plant Population and Spacing 1

    No full text

    Comparison of an ultra-low volume (ULV) sprayer against a conventional sprayer, for foliar fertiliser and fungicide applications in turfgrass

    Get PDF
    Two field studies (I and II) at the University of Nebraska-Lincoln: John Seaton Anderson Turfgrass Research Facility near Mead, NE, USA, were conducted to determine if a new ultra-low volume (ULV) sprayer can apply foliar nutrient, growth regulator, and fungicide treatments, in a manner similar to that of a conventional sprayer. Treatments were applied over creeping bentgrass ‘L-93’ (Agrostis stolonifera L.) managed as a fairway at 561 l · ha−1 and 47 l · ha−1 with the conventional and ULV sprayer, respectfully. Data were collected for chlorophyll content with a chlorophyll meter, and for the normalised difference vegetation index (NDVI) with a turf colour meter. Each plot was harvested for biomass at 21 days after treatment. Study II compared the ULV sprayer and a conventional sprayer, for the control of brown patch (Rhizoctonia solani Kuhn) in creeping bentgrass. The treatments were propiconazole and azoxystrobin. Spray volume was 561 l · ha−1 for the conventional sprayer, and 19 l · ha−1 for the ULV sprayer. Statistical differences in turf quality or dry weight reductions between the conventional and ULV sprayer were not detected. Brown patch control was also similar between the two sprayers, but azoxystrobin provided better control than propiconazole. Even with a 30-fold decrease in application volume, the results indicated that the Kamterter ULV sprayer may be a useful and effective management option for foliar fertiliser and fungicide applications in turfgrass

    Comparison of an ultra-low volume (ULV) sprayer against a conventional sprayer, for foliar fertiliser and fungicide applications in turfgrass

    No full text
    Two field studies (I and II) at the University of Nebraska-Lincoln: John Seaton Anderson Turfgrass Research Facility near Mead, NE, USA, were conducted to determine if a new ultra-low volume (ULV) sprayer can apply foliar nutrient, growth regulator, and fungicide treatments, in a manner similar to that of a conventional sprayer. Treatments were applied over creeping bentgrass ‘L-93’ (Agrostis stolonifera L.) managed as a fairway at 561 l · ha−1 and 47 l · ha−1 with the conventional and ULV sprayer, respectfully. Data were collected for chlorophyll content with a chlorophyll meter, and for the normalised difference vegetation index (NDVI) with a turf colour meter. Each plot was harvested for biomass at 21 days after treatment. Study II compared the ULV sprayer and a conventional sprayer, for the control of brown patch (Rhizoctonia solani Kuhn) in creeping bentgrass. The treatments were propiconazole and azoxystrobin. Spray volume was 561 l · ha−1 for the conventional sprayer, and 19 l · ha−1 for the ULV sprayer. Statistical differences in turf quality or dry weight reductions between the conventional and ULV sprayer were not detected. Brown patch control was also similar between the two sprayers, but azoxystrobin provided better control than propiconazole. Even with a 30-fold decrease in application volume, the results indicated that the Kamterter ULV sprayer may be a useful and effective management option for foliar fertiliser and fungicide applications in turfgrass

    Revisiting Interpersonal Media Competition \u3ci\u3eThe Gratification Niches of Instant Messaging, E-Mail, and the Telephone\u3c/i\u3e

    No full text
    The theory of niche proposes that a new medium competes with older, more established media to fulfill users\u27 needs. This study uses niche theory, a macrolevel theory, as well as social information processing theory and the theory of electronic propinquity, both microlevel theories, to examine the niche of instant messaging (IM) in providing general gratifications. Results indicate that IM is characterized by a broad niche, surpassed only by that of the cell phone. IM had substantial niche overlap with e-mail and the cell phone, indicating a degree of substitutability between them; the least overlap was with the landline telephone (LLP). The hierarchy that emerged indicated that the cell phone was superior to IM, which was superior to e-mail, followed by the LLP for providing general gratifications. Finally, displacement tests indicated that IM use displaced e-mail and LLP but not cell phone use. Implications and directions for future research are discussed
    corecore