139 research outputs found

    Generating diversity in glucocorticoid receptor signaling: mechanisms, receptor isoforms, and post-translational modifications

    Get PDF
    Abstract Glucocorticoids are necessary for life after birth and regulate numerous homeostatic functions in man, including glucose homeostasis, protein catabolism, skeletal growth, respiratory function, inflammation, development, behavior, and apoptosis. In a clinical setting, they are widely used as anti-inflammatory agents to control both acute and chronic inflammation. Unfortunately, owing to their broad range of physiological actions, patients treated with glucocorticoids for long periods of time experience a variety of serious side effects, including metabolic syndrome, bone loss, and psychiatric disorders including depression, mania, and psychosis. Our understanding of how one hormone or drug regulates all of these diverse processes is limited. Recent studies have shown that multiple glucocorticoid receptor isoforms are produced from one gene via combinations of alternative mRNA splicing and alternative translation initiation. These isoforms possess unique tissue distribution patterns and transcriptional regulatory profiles. Owing to variation in the N-terminal and C-terminal length of glucocorticoid receptor isoforms, different post-translational modifications including ubiquitination, phosphorylation, and sumoylation are predicted, contributing to the complexity of glucocorticoid signaling. Furthermore, increasing evidence suggests that unique glucocorticoid receptor isoform compositions within cells could determine the cell-specific response to glucocorticoids. In this review, we will outline the recent advances made in the characterization of the transcriptional activity and the selective regulation of apoptosis by the various glucocorticoid receptor isoforms

    Protein phosphatase 1 alpha enhances glucocorticoid receptor activity by a mechanism involving phosphorylation of serine-211

    Get PDF
    By acting as a ligand-dependent transcription factor the glucocorticoid receptor (GR) mediates the actions of glucocorticoids and regulates many physiological processes. An impaired regulation of glucocorticoid action has been associated with numerous disorders. Thus, the elucidation of underlying signaling pathways is essential to understand mechanisms of disrupted glucocorticoid function and contribution to diseases. This study found increased GR transcriptional activity upon overexpression of protein phosphatase 1 alpha (PP1α) in HEK-293 cells and decreased expression levels of GR-responsive genes following PP1α knockdown in the endogenous A549 cell model. Mechanistic investigations revealed reduced phosphorylation of GR-Ser211 following PP1α silencing and provided a first indication for an involvement of glycogen synthase kinase 3 (GSK-3). Thus, the present study identified PP1α as a novel post-translational activator of GR signaling, suggesting that disruption of PP1α function could lead to impaired glucocorticoid action and thereby contribute to diseases

    Human Glucocorticoid Receptor β Regulates Gluconeogenesis and Inflammation in Mouse Liver

    Get PDF
    Whilein vitrostudies have demonstrated that a glucocorticoid receptor (GR) splice isoform, β-isoform of human GR (hGRβ), acts as a dominant-negative inhibitor of the classic hGRα and confers glucocorticoid resistance, thein vivofunction of hGRβ is poorly understood. To this end, we created an adeno-associated virus (AAV) to express hGRβ in the mouse liver under the control of the hepatocyte-specific promoter. Genome-wide expression analysis of mouse livers showed that hGRβ significantly increased the expression of numerous genes, many of which are involved in endocrine system disorders and the inflammatory response. Physiologically, hGRβ antagonized GRα's function and attenuated hepatic gluconeogenesis through downregulation of phosphoenolpyruvate carboxykinase (PEPCK) in wild-type (WT) mouse liver. Interestingly, however, hGRβ did not repress PEPCK in GR liver knockout (GRLKO) mice. In contrast, hGRβ regulates the expression of STAT1 in the livers of both WT and GRLKO mice. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays demonstrated that hGRβ binds to the intergenic glucocorticoid response element (GRE) of the STAT1 gene. Furthermore, treatment with RU486 inhibited the upregulation of STAT1 mediated by hGRβ. Finally, our array data demonstrate that hGRβ regulates unique components of liver gene expressionin vivoby both GRα-dependent and GRα-independent mechanisms

    The Human Glucocorticoid Receptor Isoform: EXPRESSION, BIOCHEMICAL PROPERTIES, AND PUTATIVE FUNCTION

    Get PDF
    Alternative splicing of the human glucocorticoid receptor (hGR) primary transcript produces two receptor isoforms, hGRalpha and hGRbeta, which differ at their carboxyl termini. The hGRalpha isoform conveys endocrine information to target tissues by altering patterns of gene expression in a hormone-dependent fashion. In contrast to hGRalpha, very little is known about the hGRbeta splice variant. Using hGRalpha- and hGRbeta-specific riboprobes on human multiple tissue Northern blots, we show that the hGRbeta message has a widespread tissue distribution. We also prove by reverse transcriptase-polymerase chain reaction that the alternative splicing event underlying the formation of the hGRbeta message occurs in these tissues. Because the hGRbeta protein differs from hGRalpha at the extreme COOH terminus, we investigated several of the biochemical properties of hGRbeta expressed in transfected cells. hGRbeta does not bind the glucocorticoid agonist dexamethasone nor the glucocorticoid antagonist RU38486 in vivo. Moreover, in contrast to hGRalpha, hGRbeta is located primarily in the nucleus of transfected cells independent of hormone administration. Finally, in the absence of hGRalpha, hGRbeta is transcriptionally inactive on a glucocorticoid-responsive enhancer. However, when both isoforms are expressed in the same cell, hGRbeta inhibits the hormone-induced, hGRalpha-mediated stimulation of gene expression. Thus, hGRbeta potentially functions as a dominant negative inhibitor of hGRalpha activity

    Corticosteroids Are Essential for Maintaining Cardiovascular Function in Male Mice

    Get PDF
    Activation of the hypothalamic-pituitary-adrenal axis results in the release of hormones from the adrenal glands, including glucocorticoids and mineralocorticoids. The physiological association between corticosteroids and cardiac disease is becoming increasingly recognized; however, the mechanisms underlying this association are not well understood. To determine the biological effects of corticosteroids on the heart, we investigated the impact of adrenalectomy in C57BL/6 male mice. Animals were adrenalectomized (ADX) at 1 month of age and maintained for 3–6 months after surgery to evaluate the effects of long-term adrenalectomy on cardiac function. Morphological evaluation suggested that ADX mice showed significantly enlarged hearts compared with age-matched intact controls. These changes in morphology correlated with deficits in left ventricular (LV) function and electrocardiogram (ECG) abnormalities in ADX mice. Correlating with these functional defects, gene expression analysis of ADX hearts revealed aberrant expression of a large cohort of genes associated with cardiac hypertrophy and arrhythmia. Combined corticosterone and aldosterone replacement treatment prevented the emergence of cardiac abnormalities in ADX mice, whereas corticosterone replacement prevented the effects of adrenalectomy on LV function but did not block the emergence of ECG alterations. Aldosterone replacement did not preserve the LV function but prevented ECG abnormalities. Together, the data indicate that adrenal glucocorticoids and mineralocorticoids either directly or indirectly have selective effects in the heart and their signaling pathways are essential in maintaining normal cardiac function

    Native Recombinant Cyclophilins A, B, and C Degrade DNA Independently of Peptidylprolyl cis-trans -Isomerase Activity: POTENTIAL ROLES OF CYCLOPHILINS IN APOPTOSIS

    Get PDF
    Previous work in our laboratory (Montague, J., Gaido, M., Frye, C., and Cidlowski, J. (1994) J. Biol. Chem. 269, 18877-18880) has shown that human recombinant cyclophilins A, B, and C have sequence homology with the apoptotic nuclease NUC18 and that denatured cyclophilins can degrade DNA. We have now evaluated the nucleolytic activity of recombinant cyclophilins under native conditions. We show that nuclease activity inherent to cyclophilins is distinct from cis-trans-peptidylprolyl isomerase activity and is similar to that described for apoptotic nucleases. Cyclophilin nucleolytic activity is stimulated by Ca2+ and/or Mg2+, with a combination of the two being optimal for cyclophilins A and B. Mg2+ alone is sufficient for cyclophilin C nuclease activity. pH optimums are in the range of pH 7.5-9.5. Cyclophilins can degrade both single-stranded and double-stranded DNA. Additionally, cyclophilins produce 3'-OH termini in linear double-stranded substrates, suggesting the cuts produced are similar to those of apoptotic cells. Cyclophilins also display endonucleolytic activity, demonstrated by their ability to degrade supercoiled DNA. In the absence of ions, cyclophilins bind linearized DNA. When added to nuclei from nonapoptotic cells, cyclophilin C induces 50-kilobase pair DNA fragmentation but not internucleosomal fragmentation. Together, these data suggest that cyclophilins are involved in degradation of the genome during apoptosis

    Modification of Alternative Splicing of Bcl-x Pre-mRNA in Prostate and Breast Cancer Cells: ANALYSIS OF APOPTOSIS AND CELL DEATH

    Get PDF
    There is ample evidence that deregulation of apoptosis results in the development, progression, and/or maintenance of cancer. Since many apoptotic regulatory genes (e.g. bcl-x) code for alternatively spliced protein variants with opposing functions, the manipulation of alternative splicing presents a unique way of regulating the apoptotic response. Here we have targeted oligonucleotides antisense to the 5'-splice site of bcl-x(L), an anti-apoptotic gene that is overexpressed in various cancers, and shifted the splicing pattern of Bcl-x pre-mRNA from Bcl-x(L) to Bcl-x(S), a pro-apoptotic splice variant. This approach induced significant apoptosis in PC-3 prostate cancer cells. In contrast, the same oligonucleotide treatment elicited a much weaker apoptotic response in MCF-7 breast cancer cells. Moreover, although the shift in Bcl-x pre-mRNA splicing inhibited colony formation in both cell lines, this effect was much less pronounced in MCF-7 cells. These differences in responses to oligonucleotide treatment were analyzed in the context of expression of Bcl-x(L), Bcl-x(S), and Bcl-2 proteins. The results indicate that despite the presence of Bcl-x pre-mRNA in a number of cell types, the effects of modification of its splicing by antisense oligonucleotides vary depending on the expression profile of the treated cells

    The Concise Guide to PHARMACOLOGY 2023/24:Nuclear hormone receptors

    Get PDF
    The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16179. Nuclear hormone receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.</p

    The Concise Guide to PHARMACOLOGY 2023/24:Nuclear hormone receptors

    Get PDF
    The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and nearly 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16179. Nuclear hormone receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.</p
    • …
    corecore