143 research outputs found

    Optical and X-ray Studies of Ten X-ray Selected Cataclysmic Binaries

    Get PDF
    We report on ground-based optical observations of ten cataclysmic binaries that were discovered through their X-ray emission. Time-resolved radial velocity spectroscopy yields unambiguous orbital periods for eight objects and ambiguous results for the remaining two. The orbital periods range from 87 min to 9.38 hr. We also obtained time-series optical photometry for six targets, four of which have coherent pulsations. These periods are 1218 s for 1RXS J045707.4+452751, 628 s for AX J1740.2-2903, 477 s for AX J1853.3-0128, and 935 s for IGR J19267+1325. A total of seven of the sources have coherent oscillations in X-rays or optical, indicating that they are intermediate polars (DQ Herculis stars). Time-resolved spectroscopy of one object, Swift J2218.4+1925, shows that it is an AM Herculis star, or polar, and IGR J19552+0044 may also be in that class. For another object, Swift J0476.2-1611, we find an orbital period of 9.384 hr and detect the spectrum of the secondary star. The secondary's spectral contribution implies a distance of 900 (+190, -150) pc, where the error bars are estimated using a Monte Carlo technique to account for correlated uncertainties.Comment: Accepted for publication in The Astronomical Journal. 38 pages, 16 figures Revised to include a correct finding chart for RX J0457+4

    Spectroscopy and Photometry of Cataclysmic Variable Candidates from the Catalina Real Time Survey

    Get PDF
    The Catalina Real Time Survey (CRTS) has found over 500 cataclysmic variable (CV) candidates, most of which were previously unknown. We report here on followup spectroscopy of 36 of the brighter objects. Nearly all the spectra are typical of CVs at minimum light. One object appears to be a flare star, while another has a spectrum consistent with a CV but lies, intriguingly, at the center of a small nebulosity. We measured orbital periods for eight of the CVs, and estimated distances for two based on the spectra of their secondary stars. In addition to the spectra, we obtained direct imaging for an overlapping sample of 37 objects, for which we give magnitudes and colors. Most of our new orbital periods are shortward of the so-called period gap from roughly 2 to 3 hours. By considering the cross-identifications between the Catalina objects and other catalogs such as the Sloan Digital Sky Survey, we argue that a large number of cataclysmic variables remain uncatalogued. By comparing the CRTS sample to lists of previously-known CVs that CRTS does not recover, we find that the CRTS is biased toward large outburst amplitudes (and hence shorter orbital periods). We speculate that this is a consequence of the survey cadence.Comment: Accepted for publication in The Astronomical Journal. 35 pages, including 7 figure

    Optical Counterparts of Two Fermi Millisecond Pulsars: PSR J1301+0833 and PSR J1628-3205

    Get PDF
    Using the 1.3m and 2.4m telescopes of the MDM Observatory, we identified the close companions of two eclipsing millisecond radio pulsars discovered by the Green Bank Telescope in searches of Fermi Gamma-ray Space Telescope sources, and measured their light curves. PSR J1301+0833 is a black widow pulsar in a 6.5 hr orbit whose companion star is strongly heated on the side facing the pulsar. It varies from R = 21.8 to R > 24 around the orbit. PSR J1628-3205 is a "redback," a nearly Roche-lobe filling system in a 5.0 hr orbit whose optical modulation in the range 19.0 < R < 19.4 is dominated by strong ellipsoidal variations, indicating a large orbital inclination angle. PSR J1628-3205 also shows evidence for a long-term variation of about 0.2 mag, and an asymmetric temperature distribution possibly due to either off-center heating by the pulsar wind, or large starspots. Modelling of its light curve restricts the inclination angle to i > 55 degrees, the mass of the companion to 0.16 < M_c < 0.30 M_sun, and the effective temperature to 3560 < T_eff < 4670 K. As is the case for several redbacks, the companion of PSR J1628-3205 is less dense and hotter than a main-sequence star of the same mass.Comment: 9 pages, 5 figures, accepted for publication in Ap

    Spectroscopy of Four Cataclysmic Variables with Periods above 7 Hours

    Full text link
    We present spectroscopy of four cataclysmic variables. Using radial velocity measurements, we find orbital periods for the first time. The stars and their periods are GY Hya, 0.347230(9) d; SDSS J204448-045929, 1.68(1) d; V392 Hya, 0.324952(5) d; and RX J1951.7+3716, 0.492(1) d. We also detect the spectra of the secondary stars, estimate their spectral types, and derive distances based on surface brightness and Roche lobe constraints.Comment: 22 pages, 3 figures, 5 tables, to be published in December 2006 PAS

    Cataclysmic Variables in the SUPERBLINK Proper Motion Survey

    Get PDF
    We have discovered a new high proper motion cataclysmic variable (CV) in the SUPERBLINK proper motion survey, which is sensitive to stars with proper motions greater than 40 mas/yr. This CV was selected for follow-up observations as part of a larger search for CVs selected based on proper motions and their NUV-V and V-Ks_{s} colors. We present spectroscopic observations from the 2.4m Hiltner Telescope at MDM Observatory. The new CV's orbital period is near 96 minutes, its spectrum shows the double-peaked Balmer emission lines characteristic of quiescent dwarf novae, and its V magnitude is near 18.2. Additionally, we present a full list of known CVs in the SUPERBLINK catalog.Comment: Accepted for publication in The Astronomical Journal, 22 pages, 6 figure

    An Optical Study of Two VY Sculptoris-Type Cataclysmic Binary Stars: V704 And and RX J2338+431

    Full text link
    We report observations of the known cataclysmic variable star (CV) V704 And, and also confirm that the optical counterpart of the ROSAT Galactic Plane Survey source RX J2338+431 is a heretofore-neglected CV. Photometric and spectroscopic observations from MDM Observatory show both systems to be novalike variables that exhibit dips of 4-5 magnitudes from their mean brightnesses, establishing them as members of the VY~Scl subclass. From high-state emission-line radial velocities, we determine orbital periods of 0.151424(3) d (3.63 hr) for V704 And and 0.130400(1) d (3.13 hr) for RX J2338+431. In V704 And, we find that the H-alpha emission-line measures cluster into distinct regions on a plot of equivalent width versus full width at half-maximum, which evidently correspond to high, intermediate, and low photometric states. This allows us to assign spectra to photometric states when contemporaneous photometry is not available, an apparently novel method that may be useful in studies of other novalikes. Our low-state spectra of RX J2338+431 show features of an M-type secondary star, from which we estimate a distance of 890 +- 200 pc, in good agreement with the Gaia DR2 parallax.Comment: Accepted for Astronomical Journa

    Optical Studies of Twenty Longer-Period Cataclysmic Binaries

    Full text link
    We obtained time-series radial velocity spectroscopy of twenty cataclysmic variable stars, with the aim of determining orbital periods P_orb. All of the stars reported here prove to have P_orb > 3.5 h. For sixteen of the stars, these are the first available period determinations, and for the remaining four (V709 Cas, AF Cam, V1062 Tau, and RX J2133+51) we use new observations to improve the accuracy of previously-published periods. Most of the targets are dwarf novae, without notable idiosyncracies. Of the remainder, three (V709 Cas, V1062 Tau, and RX J2133+51) are intermediate polars (DQ Her stars); one (IPHAS 0345) is a secondary-dominated system without known outbursts, similar to LY UMa; one (V1059 Sgr) is an old nova; and two others (V478 Her and V1082 Sgr) are long-period novalike variables. The stars with new periods are IPHAS 0345 (0.314 d); V344 Ori (0.234 d); VZ Sex (0.149 d); NSVS 1057+09 (0.376 d); V478 Her (0.629 d); V1059 Sgr (0.286 d); V1082 Sgr (0.868 d); FO Aql (0.217 d); V587 Lyr (0.275 d); V792 Cyg (0.297 d); V795 Cyg (0.181 d); V811 Cyg (0.157 d); V542 Cyg (0.182 d); PQ Aql (0.247 d); V516 Cyg (0.171 d); and VZ Aqr(0.161 d). Noteworthy results on individual stars are as follows. We see no indication of the underlying white dwarf star in V709 Cas, as has been previously claimed; based on the non-detection of the secondary star, we argue that the system is farther away that had been thought and the white dwarf contribution is probably negligible. V478 Her had been classified as an SU UMa-type dwarf nova, but this is incompatible with the long orbital period we find. We report the first secondary-star velocity curve for V1062 Tau. In V542 Cyg, we find a late-type contribution that remains stationary in radial velocity, yet the system is unresolved in a direct image, suggesting that it is a hierarchical triple system.Comment: P.A.S.P., in press. 34 pages and 8 figure
    • …
    corecore