5 research outputs found

    Low Resolution Data-Independent Acquisition in an LTQ-Orbitrap Allows for Simplified and Fully Untargeted Analysis of Histone Modifications

    No full text
    Label-free peptide quantification in liquid chromatography–mass spectrometry (LC–MS) proteomics analyses is complicated by the presence of isobaric coeluting peptides, as they generate the same extracted ion chromatogram corresponding to the sum of their intensities. Histone proteins are especially prone to this, as they are heavily modified by post-translational modifications (PTMs). Their proteolytic digestion leads to a large number of peptides sharing the same mass, while carrying PTMs on different amino acid residues. We present an application of MS data-independent acquisition (DIA) to confidently determine and quantify modified histone peptides. By introducing the use of low-resolution MS/MS DIA, we demonstrate that the signals of 111 histone peptides could easily be extracted from LC–MS runs due to the relatively low sample complexity. By exploiting an LTQ-Orbitrap mass spectrometer, we parallelized MS and MS/MS scan events using the Orbitrap and the linear ion trap, respectively, decreasing the total scan time. This, in combination with large windows for MS/MS fragmentation (50 <i>m</i>/<i>z</i>) and multiple full scan events within a DIA duty cycle, led to a MS scan cycle speed of ∼45 full MS per minute, improving the definition of extracted LC–MS chromatogram profiles. By using such acquisition method, we achieved highly comparable results to our optimized acquisition method for histone peptide analysis (<i>R</i><sup>2</sup> correlation > 0.98), which combines data-dependent acquisition (DDA) and targeted MS/MS scans, the latter targeting isobaric peptides. By using DIA, we could also remine our data set and quantify 16 additional isobaric peptides commonly not targeted during DDA experiments. Finally, we demonstrated that by performing the full MS scan in the linear ion trap, we achieve highly comparable results as when adopting high-resolution MS scans (<i>R</i><sup>2</sup> correlation 0.97). Taken together, results confirmed that histone peptide analysis can be performed using DIA and low-resolution MS with high accuracy and precision of peptide quantification. Moreover, DIA intrinsically enables data remining to later identify and quantify isobaric peptides unknown at the time of the LC–MS experiment. These methods will open up epigenetics analyses to the proteomics community who do not have routine access to the newer generation high-resolution MS/MS generating instruments

    EpiProfile 2.0: A Computational Platform for Processing Epi-Proteomics Mass Spectrometry Data

    No full text
    Epigenetics has become a fundamental scientific discipline with various implications for biology and medicine. Epigenetic marks, mostly DNA methylation and histone post-translational modifications (PTMs), play important roles in chromatin structure and function. Accurate quantification of these marks is an ongoing challenge due to the variety of modifications and their wide dynamic range of abundance. Here we present EpiProfile 2.0, an extended version of our 2015 software (v1.0), for accurate quantification of histone peptides based on liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis. EpiProfile 2.0 is now optimized for data-independent acquisition through the use of precursor and fragment extracted ion chromatography to accurately determine the chromatographic profile and to discriminate isobaric forms of peptides. The software uses an intelligent retention time prediction trained on the analyzed samples to enable accurate peak detection. EpiProfile 2.0 supports label-free and isotopic labeling, different organisms, known sequence mutations in diseases, different derivatization strategies, and unusual PTMs (such as acyl-derived modifications). In summary, EpiProfile 2.0 is a universal and accurate platform for the quantification of histone marks via LC–MS/MS. Being the first software of its kind, we anticipate that EpiProfile 2.0 will play a fundamental role in epigenetic studies relevant to biology and translational medicine. EpiProfile is freely available at https://github.com/zfyuan/EpiProfile2.0_Family

    EpiProfile 2.0: A Computational Platform for Processing Epi-Proteomics Mass Spectrometry Data

    No full text
    Epigenetics has become a fundamental scientific discipline with various implications for biology and medicine. Epigenetic marks, mostly DNA methylation and histone post-translational modifications (PTMs), play important roles in chromatin structure and function. Accurate quantification of these marks is an ongoing challenge due to the variety of modifications and their wide dynamic range of abundance. Here we present EpiProfile 2.0, an extended version of our 2015 software (v1.0), for accurate quantification of histone peptides based on liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis. EpiProfile 2.0 is now optimized for data-independent acquisition through the use of precursor and fragment extracted ion chromatography to accurately determine the chromatographic profile and to discriminate isobaric forms of peptides. The software uses an intelligent retention time prediction trained on the analyzed samples to enable accurate peak detection. EpiProfile 2.0 supports label-free and isotopic labeling, different organisms, known sequence mutations in diseases, different derivatization strategies, and unusual PTMs (such as acyl-derived modifications). In summary, EpiProfile 2.0 is a universal and accurate platform for the quantification of histone marks via LC–MS/MS. Being the first software of its kind, we anticipate that EpiProfile 2.0 will play a fundamental role in epigenetic studies relevant to biology and translational medicine. EpiProfile is freely available at https://github.com/zfyuan/EpiProfile2.0_Family

    EpiProfile 2.0: A Computational Platform for Processing Epi-Proteomics Mass Spectrometry Data

    No full text
    Epigenetics has become a fundamental scientific discipline with various implications for biology and medicine. Epigenetic marks, mostly DNA methylation and histone post-translational modifications (PTMs), play important roles in chromatin structure and function. Accurate quantification of these marks is an ongoing challenge due to the variety of modifications and their wide dynamic range of abundance. Here we present EpiProfile 2.0, an extended version of our 2015 software (v1.0), for accurate quantification of histone peptides based on liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis. EpiProfile 2.0 is now optimized for data-independent acquisition through the use of precursor and fragment extracted ion chromatography to accurately determine the chromatographic profile and to discriminate isobaric forms of peptides. The software uses an intelligent retention time prediction trained on the analyzed samples to enable accurate peak detection. EpiProfile 2.0 supports label-free and isotopic labeling, different organisms, known sequence mutations in diseases, different derivatization strategies, and unusual PTMs (such as acyl-derived modifications). In summary, EpiProfile 2.0 is a universal and accurate platform for the quantification of histone marks via LC–MS/MS. Being the first software of its kind, we anticipate that EpiProfile 2.0 will play a fundamental role in epigenetic studies relevant to biology and translational medicine. EpiProfile is freely available at https://github.com/zfyuan/EpiProfile2.0_Family

    Slow-Binding Inhibition of <i>Mycobacterium tuberculosis</i> Shikimate Kinase by Manzamine Alkaloids

    No full text
    Tuberculosis represents a significant public health crisis. There is an urgent need for novel molecular scaffolds against this pathogen. We screened a small library of marine-derived compounds against shikimate kinase from <i>Mycobacterium tuberculosis</i> (<i>Mt</i>SK), a promising target for antitubercular drug development. Six manzamines previously shown to be active against <i>M. tuberculosis</i> were characterized as <i>Mt</i>SK inhibitors: manzamine A (<b>1</b>), 8-hydroxymanzamine A (<b>2</b>), manzamine E (<b>3</b>), manzamine F (<b>4</b>), 6-deoxymanzamine X (<b>5</b>), and 6-cyclohexamidomanzamine A (<b>6</b>). All six showed mixed noncompetitive inhibition of <i>Mt</i>SK. The lowest <i>K</i><sub>I</sub> values were obtained for <b>6</b> across all <i>Mt</i>SK–substrate complexes. Time-dependent analyses revealed two-step, slow-binding inhibition. The behavior of <b>1</b> was typical; initial formation of an enzyme–inhibitor complex (EI) obeyed an apparent <i>K</i><sub>I</sub> of ∼30 μM with forward (<i>k</i><sub>5</sub>) and reverse (<i>k</i><sub>6</sub>) rate constants for isomerization to an EI* complex of 0.18 and 0.08 min<sup>–1</sup>, respectively. In contrast, <b>6</b> showed a lower <i>K</i><sub>I</sub> for the initial encounter complex (∼1.5 μM), substantially faster isomerization to EI* (<i>k</i><sub>5</sub> = 0.91 min<sup>–1</sup>), and slower back conversion of EI* to EI (<i>k</i><sub>6</sub> = 0.04 min<sup>–1</sup>). Thus, the overall inhibition constants, <i>K</i><sub>I</sub>*, for <b>1</b> and <b>6</b> were 10 and 0.06 μM, respectively. These findings were consistent with docking predictions of a favorable binding mode and a second, less tightly bound pose for <b>6</b> at <i>Mt</i>SK. Our results suggest that manzamines, in particular <b>6</b>, constitute a new scaffold from which drug candidates with novel mechanisms of action could be designed for the treatment of tuberculosis by targeting <i>Mt</i>SK
    corecore