884 research outputs found

    Minimal model for beta relaxation in viscous liquids

    Get PDF
    Contrasts between beta relaxation in equilibrium viscous liquids and glasses are rationalized in terms of a double-well potential model with structure-dependent asymmetry, assuming structure is described by a single order parameter. The model is tested for tripropylene glycol where it accounts for the hysteresis of the dielectric beta loss peak frequency and magnitude during cooling and reheating through the glass transition.Comment: Phys. Rev. Lett. (in press

    Charge and momentum transfer in supercooled melts: Why should their relaxation times differ?

    Full text link
    The steady state values of the viscosity and the intrinsic ionic-conductivity of quenched melts are computed, in terms of independently measurable quantities. The frequency dependence of the ac dielectric response is estimated. The discrepancy between the corresponding characteristic relaxation times is only apparent; it does not imply distinct mechanisms, but stems from the intrinsic barrier distribution for α\alpha-relaxation in supercooled fluids and glasses. This type of intrinsic ``decoupling'' is argued not to exceed four orders in magnitude, for known glassformers. We explain the origin of the discrepancy between the stretching exponent β\beta, as extracted from ϵ(ω)\epsilon(\omega) and the dielectric modulus data. The actual width of the barrier distribution always grows with lowering the temperature. The contrary is an artifact of the large contribution of the dc-conductivity component to the modulus data. The methodology allows one to single out other contributions to the conductivity, as in ``superionic'' liquids or when charge carriers are delocalized, implying that in those systems, charge transfer does not require structural reconfiguration.Comment: submitted to J Chem Phy

    Relation between the High Density Phase and the Very-High Density Phase of Amorphous Solid Water

    Full text link
    It has been suggested that high-density amorphous (HDA) ice is a structurally arrested form of high-density liquid (HDL) water, while low-density amorphous (LDA) ice is a structurally arrested form of low-density liquid (LDL) water. Recent experiments and simulations have been interpreted to support the possibility of a second "distinct" high-density structural state, named very high-density amorphous (VHDA) ice, questioning the LDL-HDL hypothesis. We test this interpretation using extensive computer simulations, and find that VHDA is a more stable form of HDA and that in fact VHDA should be considered as the amorphous ice of the quenched HDL.Comment: 5 pages, 4 fig

    Welfare guarantees for proportional allocations

    Full text link
    According to the proportional allocation mechanism from the network optimization literature, users compete for a divisible resource -- such as bandwidth -- by submitting bids. The mechanism allocates to each user a fraction of the resource that is proportional to her bid and collects an amount equal to her bid as payment. Since users act as utility-maximizers, this naturally defines a proportional allocation game. Recently, Syrgkanis and Tardos (STOC 2013) quantified the inefficiency of equilibria in this game with respect to the social welfare and presented a lower bound of 26.8% on the price of anarchy over coarse-correlated and Bayes-Nash equilibria in the full and incomplete information settings, respectively. In this paper, we improve this bound to 50% over both equilibrium concepts. Our analysis is simpler and, furthermore, we argue that it cannot be improved by arguments that do not take the equilibrium structure into account. We also extend it to settings with budget constraints where we show the first constant bound (between 36% and 50%) on the price of anarchy of the corresponding game with respect to an effective welfare benchmark that takes budgets into account.Comment: 15 page

    Time-temperature superposition in viscous liquids

    Get PDF
    Dielectric relaxation measurements on supercooled triphenyl phosphite show that at low temperatures time-temperature superposition (TTS) is accurately obeyed for the primary (alpha) relaxation process. Measurements on 6 other molecular liquids close to the calorimetric glass transition indicate that TTS is linked to an ω1/2\omega^{-1/2} high-frequency decay of the alpha loss, while the loss peak width is nonuniversal.Comment: 4 page

    Anisotropic Local Stress and Particle Hopping in a Deeply Supercooled Liquid

    Get PDF
    The origin of the microscopic motions that lead to stress relaxation in deeply supercooled liquid remains unclear. We show that in such a liquid the stress relaxation is locally anisotropic which can serve as the driving force for the hopping of the system on its free energy surface. However, not all hopping are equally effective in relaxing the local stress, suggesting that diffusion can decouple from viscosity even at local level. On the other hand, orientational relaxation is found to be always coupled to stress relaxation.Comment: 4 pages, 3 figure

    The relationship between fragility, configurational entropy and the potential energy landscape of glass forming liquids

    Full text link
    Glass is a microscopically disordered, solid form of matter that results when a fluid is cooled or compressed in such a fashion that it does not crystallise. Almost all types of materials are capable of glass formation -- polymers, metal alloys, and molten salts, to name a few. Given such diversity, organising principles which systematise data concerning glass formation are invaluable. One such principle is the classification of glass formers according to their fragility\cite{fragility}. Fragility measures the rapidity with which a liquid's properties such as viscosity change as the glassy state is approached. Although the relationship between features of the energy landscape of a glass former, its configurational entropy and fragility have been analysed previously (e. g.,\cite{speedyfr}), an understanding of the origins of fragility in these features is far from being well established. Results for a model liquid, whose fragility depends on its bulk density, are presented in this letter. Analysis of the relationship between fragility and quantitative measures of the energy landscape (the complicated dependence of energy on configuration) reveal that the fragility depends on changes in the vibrational properties of individual energy basins, in addition to the total number of such basins present, and their spread in energy. A thermodynamic expression for fragility is derived, which is in quantitative agreement with {\it kinetic} fragilities obtained from the liquid's diffusivity.Comment: 8 pages, 3 figure

    Energy landscape - a key concept for the dynamics of glasses and liquids

    Full text link
    There is a growing belief that the mode coupling theory is the proper microscopic theory for the dynamics of the undercooled liquid above a critical temperature T_c. In addition, there is some evidence that the system leaves the saddlepoints of the energy landscape to settle in the valleys at this critical temperature. Finally, there is a microscopic theory for the entropy at the calorimetric glass transition T_g by Mezard and Parisi, which allows to calculate the Kauzmann temperature from the atomic pair potentials. The dynamics of the frozen glass phase is at present limited to phenomenological models. In the spirit of the energy landscape concept, one considers an ensemble of independent asymmetric double-well potentials with a wide distribution of barrier heights and asymmetries (ADWP or Gilroy-Phillips model). The model gives an excellent description of the relaxation of glasses up to about T_g/4. Above this temperature, the interaction between different relaxation centers begins to play a role. One can show that the interaction reduces the number of relaxation centers needed to bring the shear modulus down to zero by a factor of three.Comment: Contribution to the III Workshop on Nonequilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials, 22-27 September 2002, Pisa; 14 pages, 3 figures; Version 3 takes criticque at Pisa into account; final version 4 will be published in J.Phys.: Condens.Matte

    Non-Arrhenius Behavior of Secondary Relaxation in Supercooled Liquids

    Full text link
    Dielectric relaxation spectroscopy (1 Hz - 20 GHz) has been performed on supercooled glass-formers from the temperature of glass transition (T_g) up to that of melting. Precise measurements particularly in the frequencies of MHz-order have revealed that the temperature dependences of secondary beta-relaxation times deviate from the Arrhenius relation in well above T_g. Consequently, our results indicate that the beta-process merges into the primary alpha-mode around the melting temperature, and not at the dynamical transition point T which is approximately equal to 1.2 T_g.Comment: 4 pages, 4 figures, revtex
    corecore