10,502 research outputs found

    Models for energy and charge transport and storage in biomolecules

    Full text link
    Two models for energy and charge transport and storage in biomolecules are considered. A model based on the discrete nonlinear Schrodinger equation with long-range dispersive interactions (LRI's) between base pairs of DNA is offered for the description of nonlinear dynamics of the DNA molecule. We show that LRI's are responsible for the existence of an interval of bistability where two stable stationary states, a narrow, pinned state and a broad, mobile state, coexist at each value of the total energy. The possibility of controlled switching between pinned and mobile states is demonstrated. The mechanism could be important for controlling energy storage and transport in DNA molecules. Another model is offered for the description of nonlinear excitations in proteins and other anharmonic biomolecules. We show that in the highly anharmonic systems a bound state of Davydov and Boussinesq solitons can exist.Comment: 12 pages (latex), 12 figures (ps

    Hipster: Integrating Theory Exploration in a Proof Assistant

    Full text link
    This paper describes Hipster, a system integrating theory exploration with the proof assistant Isabelle/HOL. Theory exploration is a technique for automatically discovering new interesting lemmas in a given theory development. Hipster can be used in two main modes. The first is exploratory mode, used for automatically generating basic lemmas about a given set of datatypes and functions in a new theory development. The second is proof mode, used in a particular proof attempt, trying to discover the missing lemmas which would allow the current goal to be proved. Hipster's proof mode complements and boosts existing proof automation techniques that rely on automatically selecting existing lemmas, by inventing new lemmas that need induction to be proved. We show example uses of both modes

    GaAs Nanowire pn-Junctions Produced by Low-Cost and High-Throughput Aerotaxy

    Get PDF
    Semiconductor nanowires could significantly boost the functionality and performance of future electronics, light-emitting diodes, and solar cells. However, realizing this potential requires growth methods that enable high-throughput and low-cost production of nanowires with controlled doping. Aerotaxy is an aerosol-based method with extremely high growth rate that does not require a growth substrate, allowing mass-production of high-quality nanowires at a low cost. So far, pn-junctions, a crucial element of solar cells and light-emitting diodes, have not been realized by Aerotaxy growth. Here we report a further development of the Aerotaxy method and demonstrate the growth of GaAs nanowire pn-junctions. Our Aerotaxy system uses an aerosol generator for producing the catalytic seed particles, together with a growth reactor with multiple consecutive chambers for growth of material with different dopants. We show that the produced nanowire pn-junctions have excellent diode characteristics with a rectification ratio of >105, an ideality factor around 2, and very promising photoresponse. Using electron beam induced current and hyperspectral cathodoluminescence, we determined the location of the pn-junction and show that the grown nanowires have high doping levels, as well as electrical properties and diffusion lengths comparable to nanowires grown using metal organic vapor phase epitaxy. Our findings demonstrate that high-quality GaAs nanowire pn-junctions can be produced using a low-cost technique suitable for mass-production, paving the way for industrial-scale production of nanowire-based solar cells

    Internally Electrodynamic Particle Model: Its Experimental Basis and Its Predictions

    Full text link
    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts, a) electric charges present with all material particles, b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation and c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schr\"odinger equation, mass, Einstein mass-energy relation, Newton's law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A specific solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.Comment: Presentation at the 27th Int Colloq on Group Theo Meth in Phys, 200

    Modulational and Parametric Instabilities of the Discrete Nonlinear Schr\"odinger Equation

    Get PDF
    We examine the modulational and parametric instabilities arising in a non-autonomous, discrete nonlinear Schr{\"o}dinger equation setting. The principal motivation for our study stems from the dynamics of Bose-Einstein condensates trapped in a deep optical lattice. We find that under periodic variations of the heights of the interwell barriers (or equivalently of the scattering length), additionally to the modulational instability, a window of parametric instability becomes available to the system. We explore this instability through multiple-scale analysis and identify it numerically. Its principal dynamical characteristic is that, typically, it develops over much larger times than the modulational instability, a feature that is qualitatively justified by comparison of the corresponding instability growth rates

    Absolute frequency measurements of 85Rb nF7/2 Rydberg states using purely optical detection

    Full text link
    A three-step laser excitation scheme is used to make absolute frequency measurements of highly excited nF7/2 Rydberg states in 85Rb for principal quantum numbers n=33-100. This work demonstrates the first absolute frequency measurements of rubidium Rydberg levels using a purely optical detection scheme. The Rydberg states are excited in a heated Rb vapour cell and Doppler free signals are detected via purely optical means. All of the frequency measurements are made using a wavemeter which is calibrated against a GPS disciplined self-referenced optical frequency comb. We find that the measured levels have a very high frequency stability, and are especially robust to electric fields. The apparatus has allowed measurements of the states to an accuracy of 8.0MHz. The new measurements are analysed by extracting the modified Rydberg-Ritz series parameters.Comment: 12 pages, 5 figures, submitted to New. J. Phy
    corecore