35 research outputs found

    Shock induced endotheliopathy (SHINE) in acute critical illness - a unifying pathophysiologic mechanism

    Get PDF
    The Erratum to this article has been published in Critical Care 2017 21:187 Unfortunately this article [1] was published with an error. The first and last author names are presented incorrectly. The first author name should be Pär Ingemar Johansson, or alternatively Johansson PI. The last author name should be Sisse Rye Ostrowski, or alternatively Ostrowski SR.One quarter of patients suffering from acute critical illness such as severe trauma, sepsis, myocardial infarction (MI) or post cardiac arrest syndrome (PCAS) develop severe hemostatic aberrations and coagulopathy, which are associated with excess mortality. Despite the different types of injurious “hit”, acutely critically ill patients share several phenotypic features that may be driven by the shock. This response, mounted by the body to various life-threatening conditions, is relatively homogenous and most likely evolutionarily adapted. We propose that shock-induced sympatho-adrenal hyperactivation is a critical driver of endothelial cell and glycocalyx damage (endotheliopathy) in acute critical illness, with the overall aim of ensuring organ perfusion through an injured microvasculature. We have investigated more than 3000 patients suffering from different types of acute critical illness (severe trauma, sepsis, MI and PCAS) and have found a potential unifying pathologic link between sympatho-adrenal hyperactivation, endotheliopathy, and poor outcome. We entitled this proposed disease entity, shock-induced endotheliopathy (SHINE). Here we review the literature and discuss the pathophysiology of SHINE.Peer Reviewe

    The use of viscoelastic haemostatic assays in goal-directing treatment with allogeneic blood products – A systematic review and meta-analysis

    Get PDF
    Background Management of the critically bleeding patient can be encountered in many medical and surgical settings. Common for these patients is a high risk of dying from exsanguination secondary to developing coagulopathy. The purpose of this meta-analysis was to systematically review and assess randomised controlled trials (RCTs) performed on patients in acute need for blood transfusions due to bleeding to evaluate the effect of viscoelastic haemostatic assay (VHA) guidance on bleeding, transfusion requirements and mortality. Methods PubMed and EMBASE were searched for RCTs that 1) randomised patients into receiving transfusions based on either a VHA-guided (thromboelastography [TEG] or rotational thromboelastometry [ROTEM]) algorithm (intervention group) or at the clinician’s discretion and/or based on conventional coagulation tests (control group) and 2) adequately reported on the outcomes bleeding and/or transfusions and/or mortality. Data on bleeding, transfusions and mortality were extracted from each trial and included in a meta-analysis. Results Fifteen RCTs (n = 1238 patients) were included. Nine trials referred to cardiothoracic patients, one to liver transplantation, one to surgical excision of burn wounds and one to trauma. One trial was conducted with cirrhotic patients, one with patients undergoing scoliosis surgery while one trial randomised treatment in post-partum females presenting with bleeding. The amount of transfused red blood cells (RBCs), fresh frozen plasma (FFP) and bleeding volume was found to be significantly reduced in the VHA-guided groups, whereas no significant difference was found for platelet transfusion requirements or mortality.Peer Reviewe

    Metabolic systems analysis of LPS induced endothelial dysfunction applied to sepsis patient stratification.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesEndothelial dysfunction contributes to sepsis outcome. Metabolic phenotypes associated with endothelial dysfunction are not well characterised in part due to difficulties in assessing endothelial metabolism in situ. Here, we describe the construction of iEC2812, a genome scale metabolic reconstruction of endothelial cells and its application to describe metabolic changes that occur following endothelial dysfunction. Metabolic gene expression analysis of three endothelial subtypes using iEC2812 suggested their similar metabolism in culture. To mimic endothelial dysfunction, an in vitro sepsis endothelial cell culture model was established and the metabotypes associated with increased endothelial permeability and glycocalyx loss after inflammatory stimuli were quantitatively defined through metabolomics. These data and transcriptomic data were then used to parametrize iEC2812 and investigate the metabotypes of endothelial dysfunction. Glycan production and increased fatty acid metabolism accompany increased glycocalyx shedding and endothelial permeability after inflammatory stimulation. iEC2812 was then used to analyse sepsis patient plasma metabolome profiles and predict changes to endothelial derived biomarkers. These analyses revealed increased changes in glycan metabolism in sepsis non-survivors corresponding to metabolism of endothelial dysfunction in culture. The results show concordance between endothelial health and sepsis survival in particular between endothelial cell metabolism and the plasma metabolome in patients with sepsis.RANNIS Landspitali Reykjavik Rigshospitalet Copenhage

    Resuscitation with Pooled and Pathogen-Reduced Plasma Attenuates the Increase in Brain Water Content following Traumatic Brain Injury and Hemorrhagic Shock in Rats

    No full text
    Traumatic brain injury and hemorrhagic shock is associated with blood-brain barrier (BBB) breakdown and edema formation. Recent animal studies have shown that fresh frozen plasma (FFP) resuscitation reduces brain swelling and improves endothelial function compared to isotonic NaCl (NS). The aim of this study was to investigate whether pooled and pathogen-reduced plasma (OctaplasLG® [OCTA]; Octapharma, Stockholm, Sweden) was comparable to FFP with regard to effects on brain water content, BBB permeability, and plasma biomarkers of endothelial glycocalyx shedding and cell damage. After fluid percussion brain injury, hemorrhage (20 mL/kg), and 90-min shock, 48 male Sprague-Dawley rats were randomized to resuscitation with OCTA, FFP, or NS (n = 16/group). Brain water content (wet/dry weight) and BBB permeability (transfer constant for 51Cr-EDTA) were measured at 24 h. Plasma osmolality, oncotic pressure, and biomarkers of systemic glycocalyx shedding (syndecan-1) and cell damage (histone-complexed DNA) were measured at 0 and 23 h. At 24 h, brain water content was 80.44 ± 0.39%, 80.82 ± 0.82%, and 81.15 ± 0.86% in the OCTA, FFP, and NS groups (lower in OCTA vs. NS; p = 0.026), with no difference in BBB permeability. Plasma osmolality and oncotic pressures were highest in FFP and OCTA resuscitated, and osmolality was further highest in OCTA versus FFP (p = 0.027). In addition, syndecan-1 was highest in FFP and OCTA resuscitated (p = 0.010). These results suggest that pooled solvent-detergent (SD)-treated plasma attenuates the post-traumatic increase in brain water content, and that this effect may, in part, be explained by a high crystalloid and colloid osmotic pressure in SD-treated plasma
    corecore