35,944 research outputs found

    Self Interference of Single Electrodynamic Particle in Double Slit

    Full text link
    It is by the long established fact in experiment and theory that electromagnetic waves, here as one component of an IED particle, passing a double slit will undergo self inference each, producing at a detector plane fringed intensities. The wave generating point charge of a zero rest mass, as the other component of the particle, is maintained a constant energy and speed by a repeated radiation reabsorption/reemission scheme, and in turn steered in direction in its linear motion by the reflected radiation field, and will thereby travel to the detector along (one of) the optical path(s) of the waves leading to a bright interference fringe. We elucidate the process formally based on first principles solutions for the IED particle and known principles for wave-matter interaction.Comment: Presentation at The 6th Int. Symp. Quantum Theory and Symmetries, Univ. Kent, 2009

    Optomechanical-like coupling between superconducting resonators

    Get PDF
    We propose and analyze a circuit that implements a nonlinear coupling between two superconducting microwave resonators. The resonators are coupled through a superconducting quantum interference device (SQUID) that terminates one of the resonators. This produces a nonlinear interaction on the standard optomechanical form, where the quadrature of one resonator couples to the photon number of the other resonator. The circuit therefore allows for all-electrical realizations of analogs to optomechanical systems, with coupling that can be both strong and tunable. We estimate the coupling strengths that should be attainable with the proposed device, and we find that the device is a promising candidate for realizing the single-photon strong-coupling regime. As a potential application, we discuss implementations of networks of nonlinearly-coupled microwave resonators, which could be used in microwave-photon based quantum simulation.Comment: 10 pages, 7 figure

    Origin of Mass. Mass and Mass-Energy Equation from Classical-Mechanics Solution

    Full text link
    We establish the classical wave equation for a particle formed of a massless oscillatory elementary charge generally also traveling, and the resulting electromagnetic waves, of a generally Doppler-effected angular frequency \w, in the vacuum in three dimensions. We obtain from the solutions the total energy of the particle wave to be \eng=\hbarc\w, 2\pi \hbarc being a function expressed in wave-medium parameters and identifiable as the Planck constant. In respect to the train of the waves as a whole traveling at the finite velocity of light cc, \eng=mc^2 represents thereby the translational kinetic energy of the wavetrain, m=\hbarc\w/c^2 being its inertial mass and thereby the inertial mass of the particle. Based on the solutions we also write down a set of semi-empirical equations for the particle's de Broglie wave parameters. From the standpoint of overall modern experimental indications we comment on the origin of mass implied by the solution.Comment: 13 pages, no figure. Augmented introductio
    • …
    corecore