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We propose and analyze a circuit that implements a nonlinear coupling between two superconducting
microwave resonators. The resonators are coupled through a superconducting quantum interference device
that terminates one of the resonators. This produces a nonlinear interaction of the standard optomechanical form,
where the quadrature of one resonator couples to the photon number of the other resonator. The circuit therefore
allows for all-electrical realizations of analogs to optomechanical systems, with coupling that can be both strong
and tunable. We estimate the coupling strengths that should be attainable with the proposed device, and we find
that the device is a promising candidate for realizing the single-photon strong-coupling regime. As a potential
application, we discuss implementations of networks of nonlinearly coupled microwave resonators, which could
be used in microwave-photon-based quantum simulation.
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I. INTRODUCTION

Superconducting microwave resonators have emerged as
one of the key components in quantum electronics [1–4]
in recent years. In a parallel development, the field of
quantum optomechanics [5–7] have seen equally impressive
progress, with recent accomplishments including sideband
cooling of mechanical resonators to their ground state [8,9],
normal-mode splitting [10–12], generation of nonclassi-
cal states of light [13,14], near quantum-limited detection
[15–17], and state transfer [18,19]. In several of these recent
works [8,11,15–19], microwave resonators, rather than optical
cavities, were coupled to the mechanical systems. Meanwhile,
in electrical systems, superconducting microwave resonators
have been used as quantum buses to couple superconducting
qubits in a variety of architectures [20–22], for readout and
control of superconducting qubits [23–26], for characterization
of quantum dots [27–30], and for interfacing different types of
quantum systems in hybrid circuits [31].

Coupled microwave resonators has also been studied ex-
tensively, both theoretically [32–34] and experimentally [35].
However, in these circuits, the resonators are typically coupled
linearly to each other or to other quantum systems, through
the amplitude of the resonator’s electric or magnetic field.
Here we investigate a nonlinear coupling between two mi-
crowave resonators [36], where, in a certain regime, the field
amplitude in one resonator couples to the photon number in
the other resonator. This is exactly the type of interaction
encountered in optomechanical systems [5–7], making it
possible to implement analogs of optomechanical systems
in all-electrical circuits. In such analogs, the mechanical
component is replaced by an electrical resonator, but without
losing the interesting nonlinear coupling that is characteris-
tic for optomechanical systems. Moreover, using this type
of device, it appears possible to reach the single-photon
strong-coupling regime. This regime has recently received
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considerable attention, and a number of interesting phenomena
has been theoretically predicted, including photon blockade
effects [37], multiple cooling resonances [38,39], and the
generation of nonclassical states [40–43].

The physical realization of this nonlinear coupling uses
a superconducting quantum interference device (SQUID)
embedded in one of the resonators. The magnetic flux that
threads the SQUID loop can modify the properties of the
resonator, such as its resonance frequency [44]. Supercon-
ducting microwave resonators with embedded SQUIDs have
been proposed for realizing tunable [36] and beam-splitter [45]
coupling, and have been used to implement frequency-tunable
resonators [46–48] with tunable boundary conditions and
tunable index of refraction. With parametrically modulated
applied magnetic flux, i.e., with classical driving fields, these
types of devices have been used to implement parametric
amplifiers [48–50] and nonadiabatic quantum phenomena such
as the dynamical Casimir effect [51–55]. See, e.g., Ref. [56]
for a recent review.

Here we are interested in the case when the applied
magnetic flux through the SQUID is due to the quantum field
of another superconducting resonator, i.e., a quantized drive
field. Also, we consider the situation where the modulated
resonator adiabatically adjusts to the changes imposed by the
magnetic flux through the embedded SQUID. Under these
conditions we can formulate an effective Hamiltonian that
describes the dynamics of the system. We show that this
effective Hamiltonian is of the standard optomechanical form.

The remaining part of this paper is organized as follows. In
Sec. II we introduce the device and set up a model for it. Here
we use the Lagrangian formalism to model a lump-element
representation of the circuit to obtain the boundary conditions
and find the adiabatic mode functions for the resonators. In
Sec. III we use the derived mode functions to formulate an
effective Hamiltonian for the system, which is shown to be of
the optomechanical form in Sec. III A. In Sec. IV we analyze
possible coupling designs and evaluate the corresponding
coupling strengths, and in Sec. V we discuss dissipation and
the decay rates of the two resonators. In Sec. VI we discuss
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possible circuit layouts for realizing arrays of nonlinearly
coupled resonators. Finally, we summarize our results in
Sec. VII.

II. DEVICE AND ITS CIRCUIT MODEL

The type of device we investigate here is shown in one
possible configuration in Fig. 1. Alternative configurations
could also be used, with for example a SQUID located in the
middle of resonator A, or with resonator A made of an array
of SQUIDs. The main properties of the system would remain
unchanged.

Here we focus on a quantum mechanical analysis of the
device in Fig. 1. The flux through the SQUID can in a
certain regime be seen as modulating the effective length
of resonator A or, equivalently, its fundamental resonance
frequency ωA. The flux through the SQUID is partly due to the
magnetic field generated by resonator B. We therefore expect
an interaction of the form a†a(b + b†), where a and b are the
annihilation operators for resonator A and B, respectively. In
the following we derive this result from a detailed quantum
network analysis [57,58] of the circuit.

A. Circuit Lagrangian

We model the electrical circuit in Fig. 1 by decomposing
it in lumped-circuit elements, as shown, for the most relevant
part of the circuit, in Fig. 2. As generalized coordinates we
use the magnetic node fluxes �α

n (where α = A,B), which
are related to the node voltages V α

n as �α
n = ∫ t

dt ′V α
n (t ′),

and to the gauge-invariant superconducting node phases ϕα
n =

2π�α
n/�0. In terms of these coordinates, the Lagrangian of

FIG. 1. (Color online) Schematic illustration of the system,
which consists of two superconducting transmission-line resonators
A and B. The resonators are coupled to each other through the
SQUID terminating resonator A. The coupling mechanism is the
following: part of the magnetic field generated by the signal in
resonator B threads the SQUID loop that terminates resonator A,
changing the phase across the SQUID. This phase determines the
boundary condition for resonator A. The result is an interaction
where the amplitude of resonator B couples to the photon number of
resonator A.

...

...

... ...

... ...

FIG. 2. Circuit diagram of the coupler part of the circuit in Fig. 1,
where resonator B meets the SQUID embedded in resonator A.

the circuit can be written as

L = LA + LB + LS, (1)

where

Lα = 1

2

Nα∑
n=1

(
�xCα

0

(
�̇α

n

)2 −
(
�α

n+1 − �α
n

)2

�xLα
0

)
, (2)

LS = 1

2
CJ (�̇J )2 + EJ (�ext) cos

(
2π

�J

�0

)
. (3)

Here we have assumed that the SQUID is symmetric (CJ,i =
CJ /2 and EJ,i = EJ ) and we have written its Lagrangian LS

of the form of an effective Josephson junction with Josephson
energy

EJ (�ext) = 2EJ

∣∣∣∣cos

(
π

�ext

�0

)∣∣∣∣ . (4)

In the following we also assume that the two transmission lines
are identical, with Cα

0 = C0 and Lα
0 = L0.

From the circuit Lagrangian, we obtain equations of motion
for flux nodes �α

n . In the continuum limit, �x → 0, the
resulting flux fields �A(x,t) and �B(x,t) are found to obey
the one-dimensional massless Klein-Gordon wave equation,
which has a continuum of independent plane-wave solutions
propagating in the positive and negative direction, respectively.
We can therefore write the quantum-mechanical representation
of the flux field as

�(x) =
√

Z0�

4π

∫ ∞

−∞

dω√|ω| [aR(ω)e−i(−kωx+ωt)

+ aL(ω)e−i(kωx+ωt)], (5)

where aL(ω) and aR(ω) are annihilation operators for
the fields propagating in the negative and positive x

direction, respectively, satisfying the commutation re-
lation [aL(ω),a†

L(ω′)] = [aR(ω),a†
R(ω′)] = δ(ω − ω′), and

aL(−ω) = a
†
L(ω), aR(−ω) = a

†
R(ω). Here, Z0 = √

L0/C0 is
the characteristic impedance, kω = ω/v is the wave number,
and v = 1/

√
L0C0 the propagation speed of the signal in the

transmission line. At the boundaries, i.e., at x = 0 and x = dA

for resonator A, and at x = 0 and x = dB for resonator B (see
Fig. 1), the equations of motion define the boundary conditions
for the continuum fields �A(x) and �B(x). These boundary

053833-2



OPTOMECHANICAL-LIKE COUPLING BETWEEN . . . PHYSICAL REVIEW A 90, 053833 (2014)

conditions can be used to derive the mode functions for the
resonators.

B. Boundary conditions

In this section we write down the boundary conditions for
the two sides of the two resonators. Here we assume that
the two resonators have well-defined resonance frequencies,
i.e., their quality factors are high, and the capacitive coupling
to the external transmission lines shown in Fig. 1 can be
neglected (that is, we consider the limit CA,B → 0). In this
limit, the boundary conditions therefore correspond to that of
an open-ended resonator. Finite capacitances CA,B result in a
broadening and small frequency shifts of each mode (see, e.g.,
Ref. [52], and also Sec. V, where we further discuss dissipation
and the decay rates of the resonators).

1. Resonator A

In the limit CA → 0, resonator A is open ended at x = 0
(see Fig. 1), and the corresponding boundary condition is

∂x�A(0,t) = 0. (6)

At the end terminated by the SQUID, x = dA, the boundary
condition [44,52] can be written as

CJ ∂tt�A(dA,t) +
(

2π

�0

)2

EJ (�ext)�A(dA,t)

+ 1

L0
∂x�A(dA,t) = 0. (7)

In general, the SQUID that terminates resonator A is a
dynamical system of its own, and its energy-level spectrum
is anharmonic due to the cos(�J ) dependence in its po-
tential. However, in the considered parameter regime where
�J /�0 < 1, the nonlinearity is small and the first excited
state is characterized by the SQUIDs plasma frequency ωp =
2π

√
EJ /�2

0CJ . If the plasma frequency of the SQUID is large
compared to the frequencies of the relevant modes in resonator
A, then the SQUID remains adiabatically in its ground state and
can be described as a lumped-circuit element. In experiments
with SQUID-terminated transmission lines [47,54], the plasma
frequency of the SQUID can be made relatively high (∼70 GHz
or higher), which is large compared to the typical frequencies
of photons in the transmission line (order of 10 GHz, or
less). These studies have experimentally demonstrated that
the lumped-circuit element model of the SQUID in this type
of system can be a good approximation. In this case, we can
neglect the first term in the boundary condition Eq. (7), and
write

�A(dA,t) + �d(�ext)∂x�A(dA,t) = 0, (8)

where

�d(�ext) =
(

�0

2π

)2 1

L0EJ (�ext)
. (9)

This can be interpreted as an effective length that can be tuned
by the externally applied magnetic flux �ext. If this effective
length is small compared to the length scale at which �A(x)
varies substantially, i.e., small compared to the wavelength,
then Eq. (8) can be viewed as a differential. If we imagine

that the transmission line uniformly extends beyond the point
x = dA for an additional length �d(�ext), we can then rewrite
the boundary condition Eq. (8) on the simple form

�A(deff(�ext),t) = 0, (10)

where we have introduced the new effective tunable length of
resonator A

deff(�ext) = dA + �d(�ext). (11)

2. Resonator B

In the limit CB → 0, resonator B is open ended at both x =
0 and x = dB (see Fig. 1), and the corresponding boundary
conditions are therefore

∂x�B(0,t) = 0, (12)

∂x�B(dB,t) = 0. (13)

C. SQUID biasing and effective length

The externally applied magnetic flux, �ext, is partly
produced by the field of resonator B, and partly by a static
background flux, �0

ext. Here we assume that the physical
dimension of SQUID loop is small compared to the typical
length scale at which the field in resonator B varies. We can
then decompose the externally applied magnetic flux in a static
bias and a small deviation,

�ext = �0
ext + ��ext, (14)

where the small deviation ��ext is a function of the field
amplitude at a single point x0 in resonator B. For now we are
not concerned with the detailed form of ��ext, and we only
require it to be small compared to �0. Under this condition
we can expand the effective Josephson energy of the SQUID,
Eq. (4), for �0

ext ∈ [0,�0/2], as

EJ (�ext) ≈ E0
J − 2EJ

π

�0
��ext sin

(
π

�0
ext

�0

)
, (15)

where

E0
J = 2EJ

∣∣∣∣cos

(
π

�0
ext

�0

)∣∣∣∣ . (16)

Using Eq. (15) in the expression for the effective length
associated with the SQUID, Eq. (9), we obtain

�d(�ext) ≈
(

�0

2π

)2 1

L0E
0
J

[
1 + π

��ext

�0
tan

(
π

�0
ext

�0

)]
,

(17)

and to simplify the expressions we write

�d(�ext) = �d0
(
�0

ext

) + δd
(
�0

ext

)
��ext, (18)

with

�d0
(
�0

ext

) =
(

�0

2π

)2 1

L0E
0
J

, (19)

δd
(
�0

ext

) = 1

2

(
�0

2π

)
1

L0E
0
J

tan

(
π

�0
ext

�0

)
, (20)
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and

deff(�ext) = d0
eff

(
�0

ext

) + δd
(
�0

ext

)
��ext, (21)

d0
eff

(
�0

ext

) = dA + �d0
(
�0

ext

)
. (22)

D. Fields and modes

Given the quantum description of the flux field in the two
resonators given in Eq. (5), we are now interested in using the
boundary conditions given in the previous section to derive the
adiabatic modes for the two resonators.

1. Resonator A

With the two boundary conditions, Eqs. (6) and (7),
corresponding to an open and a short circuit, respectively,
resonator A becomes a λ/4 resonator. In particular, impos-
ing the two boundary conditions results in the constraint
cos[kA

ω deff(�ext)] = 0, which is satisfied with the frequencies
ωA

n = π
2 (2n + 1)v/deff(�ext). The field, written in terms of the

corresponding discrete mode functions, becomes

�A(x,t) =
√

Z0�

2π

∑
n

√
ωdA

ωA
n

cos

(
π (2n + 1)x

2deff(�ext)

)

×(
ane

−iωA
n t + H.c.

)
, (23)

where ωdA
= 2πv/deff(�ext) is the full-wavelength frequency

of the resonator of length deff(�ext), and an is the annihilation
operator of the nth mode, which satisfies [an,a

†
m] = δnm. Here

the field is written in terms of the instantaneous, or adiabatic,
mode functions for resonator A, for a given applied magnetic
flux �ext.

2. Resonator B

With the two boundary conditions, Eqs. (12) and (13),
which both are open-ended terminations, resonator B becomes
a λ/2 resonator. In particular, imposing these two boundary
conditions results in the constraint sin(kB

ω dB) = 0, which is
satisfied with the frequencies ωB

n = πnv/dB . Writing the field
in terms of the corresponding discrete mode functions yields

�B(x,t) =
√

Z0�

2π

∑
n

√
ωdB

ωB
n

cos

(
πnx

dB

)

×(
bne

−iωB
n t + H.c.

)
, (24)

where ωdB
= 2πv/dB , and bn is the annihilation operator of

the nth mode, satisfying [bn,b
†
m] = δnm.

III. EFFECTIVE HAMILTONIAN

Using the adiabatic modes derived in the previous section,
and their corresponding annihilation operators, we can write
the Hamiltonian for the two resonators of the form

H =
∑

n

�ωA
n a†

nan +
∑

n

�ωB
n b†nbn. (25)

Assuming that δd(�0
ext)��ext 	 d0

eff(�ext), which implies
that the optical length modulation is small compared to the

total optical length of resonator A, we can now use Eq. (21) to
write the mode frequencies for resonator A as

ωA
n = π

2

(2n + 1)v

d0
eff

(
�0

ext

) + δd
(
�0

ext

)
��ext

≈ ω̃A
n

(
1 − δd

(
�0

ext

)
d0

eff

(
�0

ext

)��ext

)
, (26)

where ω̃A
n = π

2 (2n + 1)v/d0
eff(�

0
ext). Inserting this expression

in the Hamiltonian Eq. (25), we obtain an effective Hamilto-
nian

H =
∑

n

�ω̃A
n a†

nan +
∑

n

�ωB
n b†nbn

−
∑

n

�ωA
n

δd
(
�0

ext

)
d0

eff

(
�0

ext

)��exta
†
nan. (27)

This Hamiltonian is valid when the modes of resonator A

instantaneously adjust to changes in the applied magnetic flux
��ext, which are due to the dynamics of the field in resonator
B. This is the case for the lowest few modes of resonator A

when ωA 
 ωB , and when resonator B is not very strongly
excited. In this case, the optical length modulation is small
compared to the wavelength of the relevant modes in A, and
the round-trip time of the electromagnetic signal in resonator A

is much shorter than the time scale of variation in resonator B.
The retardation effects due the changing boundary condition
of resonator A can then be neglected [59]. This adiabatic
approximation thus requires that the frequency shift due to
the third term in Eq. (27) is small compared to the resonance
frequencies ωA

n .
We now assume that the deviation of the external bias flux

from the static bias �0
ext takes the form

��ext = �0

∑
n

Gn(bn + b†n), (28)

where Gn is the effective coupling strength between the
nth mode and the SQUID, including for example geometric
factors, and the normalized mode amplitude at the point of
the SQUID. This form will be motivated later when explicit
coupling geometries are considered. With this form of ��ext,
the effective Hamiltonian takes the form

H =
∑

n

�ω̃A
n a†

nan +
∑

n

�ωB
n b†nbn

−
∑

n

�ω̃A
n

δd
(
�0

ext

)
d0

eff

(
�0

ext

)�0

∑
m

Gm(bm + b†m)a†
nan.

(29)

A. Optomechanical Hamiltonian

If we restrict the dynamics of the system to only involve
the two fundamental modes (i.e., by not exciting any higher
modes), we obtain a simplified two-mode Hamiltonian

H = �ωAa†a + �ωBb†b − �g0a
†a(b + b†), (30)

where, for brevity, we have dropped the indices on the
annihilation operators and the mode frequencies. Here

g0 = ωAF
(
�0

ext

)
G1 (31)
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is the coupling strength between the two resonators, and

F
(
�0

ext

) = �0
δd

(
�0

ext

)
d0

eff

(
�0

ext

) . (32)

The coupling strength is comprised of two factors, in addition
to the frequency factor ωA: (i) a factor F (�0

ext) that depends
on the properties and the bias conditions of the SQUID, and
(ii) a factor G1 that depends on the geometric arrangement of
the SQUID and the resonators. To produce a large coupling
strength we are interested in maximizing both of these factors.

The Hamiltonian Eq. (30) is of the standard optomechanical
form, and the device we consider here is therefore analogous
with an optomechanical system. However, in contrast to an
optomechanical system, here both resonators are electrical and
the fundamental nonlinear interaction strength g0 can be tuned
by changing the flux bias �0

ext.
As in the optomechanical case [6], we have in the derivation

of Hamiltonian Eq. (30) assumed that ωA 
 ωB , so that the
field in resonator A adiabatically adjusts to the parametrically
changing resonance frequency due to the dynamics of res-
onator B. We can compensate for the difference in frequencies
by applying a driving field on resonator A, with frequency ωd

and amplitude εA,

H = �ωAa†a + �ωBb†b − �g0a
†a(b† + b)

+ �(εAae−iωd t + ε∗
Aa†eiωd t ), (33)

and applying the unitary transformation U = exp[iωda
†at],

which makes the drive terms time independent,

H = ��Aa†a + �ωBb†b − �g0a
†a(b† + b)

+ �(εAa + ε∗
Aa†). (34)

Here �A = ωA − ωd , and if we choose �A = ωB , i.e.,
ωd = ωA − ωB , the two resonators are effectively resonant.
Furthermore, if the amplitude of the applied driving field εA

is large, we can linearize the coupling by applying the unitary
displacement transformation D(α) = exp[αa† − α∗a], where
α = εA/�A, and neglecting the term �g0a

†a(b† + b). The
linearized Hamiltonian is

H = ��Aa†a + �ωBb†b + �g0α(a + a†)(b + b†)

− �g0|α|2(b + b†), (35)

and here the strength of the effective linear coupling, g0α, is
proportional to the driving amplitude. This is commonly used
in optomechanics to enhance the coupling strength when the
fundamental coupling strength g0 itself is too small. This linear
coupling regime has several important applications [6,7],
including state transfer, sideband cooling, and parametric am-
plification. Also, in hybrid electro-optomechanical systems, it
has been shown that strong Kerr nonlinearities can be realized
in this weak-coupling regime [60].

If, on the other hand, the fundamental coupling strength
g0 is comparable to ωB , it is instructive to apply the unitary
transformation U = exp[−g0a

†a(b† − b)/ωB], after which
the Hamiltonian Eq. (30) takes the form

H = ��Aa†a + �ωBb†b + �
g2

0

ωB

(a†a)2. (36)

This Hamiltonian includes a nonlinear Kerr term, i.e.,
an effective photon-photon interaction term, with coupling
strength g2

0/ωB . This regime has recently been actively
studied theoretically in optomechanics [37–39], and it has
been shown to feature interesting phenomena, such as photon
blockade effects [37], and multiple cooling resonances [39],
and allowing for the generation of nonclassical states [40–43].

IV. COUPLING STRENGTH

In this section, we explicitly evaluate the coupling strength
g0 for two possible coupling geometries. We first turn our
attention to the factor F (�ext), which only depends on the
properties and the bias conditions of the SQUID. The explicit
form of F (�ext) is

F (�ext) = π
�d0(�ext)

dA + �d0(�ext)
tan

(
π

�ext

�0

)
, (37)

which is shown graphically in Fig. 3. It is clear that F (�ext)
can be made small by tuning �ext to zero, and also that it can be
tuned to the order of unity, or even much larger, by letting �ext

approach 1
2�0. However, when �ext approach 1

2�0, the plasma
frequency of the SQUID decrease rapidly, and an assumption
in deriving the effective Hamiltonian was that this plasma
frequency must be much larger than the resonance frequency
ωA. This prohibits tuning �ext too close to 1

2�0. However, with
reasonable values of �ext/�0 it is realistic to obtain F (�ext)
of the order of 1 (e.g., �ext/�0 ≈ 0.3–0.4). With an increased
plasma frequency of the SQUID, i.e., a large Josephson energy
EJ , �ext could possibly be further increased.

In addition to the factor F (�ext), the coupling strength
Eq. (31) also contains the factor G1, which depends on the
detailed geometry of the coupling. Below we estimate the
numerical values of G1 for two possible geometries shown in
Fig. 4.

A. Inductive coupling

A schematic illustration of a coupling design where the
magnetic field of resonator B couples inductively to the
SQUID loop is shown in Fig. 4(a). An exact calculation of
the coupling strength for this design would require detailed
modeling of how the magnetic field extends around the

FIG. 3. (Color online) �ext dependence of the factor F (�ext) that
appears in the coupling strength [see Eq. (31)].
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FIG. 4. (Color online) Two possible coupling geometries. (a) An
inductive coupling design, where the magnetic field from resonator B

couples inductively to the SQUID loop. (b) An alternative coupling
design, with potentially larger coupling strength, where the SQUID
loop is galvanically connected to resonator B.

microstrips that define the microwave resonators. However,
an estimate of the coupling strength can be obtained by
assuming that the magnetic field B(x,r) takes the form of
that surrounding a perfect line conductor. In this case

B(x,r) = μ0IB(x)

2πr
, (38)

where r is the radial distance from the conductor, IB(x) is the
current at position x, and μ0 is the permeability of free space.
The current IB(x) can be evaluated using the expression for
the field in terms of the mode functions, Eq. (24),

IB(x0) = −L−1
0 ∂x�B(x0) = L−1

0

√
Z0�

2π

∑
n

√
ωdB

ωB
n

πn

dB

× sin

(
πnx0

dB

) (
bne

−iωB
n t + H.c.

)
. (39)

The strongest coupling strength (for the fundamental mode
n = 1, as well as other odd-n modes) is obtained by placing
resonator A so that it couples to resonator B at the midpoint
x0 = dB/2, in which case we have

IB(x0) = L−1
0

√
Z0�

2π

1

dB

∑
n

√
ωdB

ωB
n

πn

× sin

(
πn

2

)(
bne

−iωB
n t + H.c.

)
. (40)

The magnetic flux through the SQUID due to the field from
the resonator B can be written

��ext =
∫

S

B dS =
∫ d2

d1

dr

∫ x0+�

x0

dx B(x,r), (41)

and assuming that IB(x) is constant over [x0,x0 + �], we
obtain

��ext = �
μ0IB(x0)

2π

∫ d2

d1

dr

r
= �

μ0IB(x0)

2π
ln(d2/d1).

(42)

Using the expression for the current given in Eq. (39), we have

��ext = μ0� ln(d2/d1)

2L0dB

√
Z0�

2π

∑
n

√
ωdB

ωB
n

n

× sin

(
πn

2

)(
bne

−iωB
n t + H.c.

)
. (43)

This can be written of the form of Eq. (28) with

Gind
n = μ0�n ln(d2/d1)

2L0�0dB

√
Z0�

2π

ωdB

ωB
n

sin

(
πn

2

)
, (44)

and, in particular, for the fundamental mode (n = 1), in which
we are most interested, we have

Gind
1 = μ0L

−1
0 ln(d2/d1)

�

2dB

1

�0

√
Z0�

2π

√
ωdB

ωB
1

. (45)

B. Galvanic coupling

An alternative coupling design, which could produce
stronger coupling, is shown in Fig. 4(b). In this case, part
of the SQUID loop is galvanically connected to resonator B,
and the fluxoid quantization condition for the SQUID loop is

�ext = �J,1 − �J,2 + �B(x0 + �) − �B(x0). (46)

Assuming that the field in the resonator B varies only slightly
between x0 and x0 + �, we can linearize and write the
difference �B(x0 + �) − �B(x0) in Eq. (46) as a differential,

�ext = �J,1 − �J,2 + �∂x�B(x0). (47)

We can now use this constraint to proceed as usual and
eliminate one phase variable, and introduce the new variable
�J for the remaining SQUID degree of freedom

�J,1 = �J + 1
2 [�ext − �∂x�B(x0)] , (48)

�J,2 = �J − 1
2 [�ext − �∂x�B(x0)] . (49)

Here we identify ��ext = −�∂x�B(x0), and using the
expression for the field of resonator B, Eq. (24), we obtain

��ext = �

dB

√
Z0�

2π

∑
n

√
ωdB

ωB
n

πn

× sin

(
πnx0

dB

) (
bne

−iωB
n t + H.c.

)
, (50)
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FIG. 5. (Color online) Normalized coupling strength g0/ωA as a
function of the external flux bias �ext, for the galvanic (blue solid) and
inductive (green dashed) coupling designs. The parameters used to
evaluate Eq. (54) were Z0 ≈ 50 �, ωA = 10 GHz, ωB = 1 GHz, dA =
dB/20 = 3 mm, L0 = 4.57 × 10−7 H/m, C0 = 1.46 × 10−10 H/m,
�/dB = 10%, and EJ = 4.11 × 10−22 J.

which can be written of the form of Eq. (28) with

Ggalv
n = πn

�

dB

1

�0

√
Z0�

2π

√
ωdB

ωB
n

sin

(
πnx0

dB

)
. (51)

Again, we are most interested in the coupling strength for the
fundamental mode (n = 1), and for x0 = dB/2, we have

G
galv
1 = π

�

dB

1

�0

√
Z0�

2π

√
ωdB

ωB
1

. (52)

C. Total coupling strength

The ratio of the coupling strengths obtained for the
inductive and galvanic coupling designs, assuming equal �, is

G
galv
1

Gind
1

= 2π

μ0L
−1
0 ln(d2/d1)

. (53)

With d2 = 2d1, μ0 ≈ 1.26 × 10−6 H/m, and L0 = 4.57 ×
10−7 H/m, this ratio is approximately 3.3, demonstrating that
galvanic coupling design is slightly more efficient.

The explicit form of the total coupling strength g0, using
the more favorable galvanic coupling design, is

g0 = ωA
1

�

dB

�d0
(
�0

ext

)
dA + �d0

(
�0

ext

) π2

�0

√
Z0�

2π

ωdB

ωB
1

tan

(
π

�0
ext

�0

)
.

(54)

This expression is shown graphically in Figs. 5 and 6, for
the specific parameters given in the captions. It is clear that
g0 	 ωA, as expected and required, but it is not necessary that
g0 	 ωB , since ωB should be at least an order of magnitude
smaller than ωA. Also, with resonators with sufficiently large
Q factors (∼103), it should be possible to enter the strong-
coupling regimes, where the frequency shift of resonator A

due to the presence of a single photon in resonator B exceeds
the linewidth of resonator A, i.e., g0 > κA, or when a single
photon in resonator A displaces resonator B an amount that

FIG. 6. (Color online) Contours of g0/ωB , the ratio of the fun-
damental coupling strength to the frequency of resonator B, as a
function of the ratio between the frequencies of resonator B and A,
ωB/ωA, and the external flux bias �0

ext/�0, for the galvanic coupling
design. Here we used the same parameters as in Fig. 5, except that
here ωA is varied.

exceeds its zero-point fluctuations, i.e., g0 > κB and g0 ∼ ωB .
Here κA and κB denotes the relaxation rates of resonator A and
B, respectively.

In particular, the single-photon strong-coupling regime [7],
where g0 ∼ ωB , should be realizable in the circuit considered
here. Figure 6 shows the ratio g0/ωB as a function of the
resonator frequencies and the externally applied flux bias.
When the frequency ratio ωB/ωA is sufficiently small, it should
be possible to reach g0 ∼ ωB for reasonable values of �0

ext/�0

(i.e., not too close to 0.5). The device we consider here is
therefore a possible candidate for realizing an analog of an
optomechanical system in this strong-coupling regime.

V. DISSIPATION

In the previous two sections we considered the effective
Hamiltonian and estimated the achievable coupling strength
between the two resonators. We noted that the single-photon
coupling strength g0 can be both tunable and strong, in the
sense that it can be made comparable to the frequency of
the resonator that plays the role of the mechanical resonator,
g0 ∼ ωB . However, the behavior of optomechanical systems,
and their possible applications, is also strongly influenced
by dissipation. In particular, to reach the resolved-sideband
regime, the dissipation rates κA and κB , of resonator A and
B, must not exceed the frequency of the “mechanical mode,”
i.e., κA,κB < ωB/2π . In most conventional optomechanical
systems, the decay rate of the mechanical system is much
smaller than the decay of the optical system, i.e., κB 	 κA.
The relevant condition for the resolved-sideband regime is
therefore κA < ωB/2π , and part of the challenge of reaching
this regime is due to the fact that the optical and mechanical
frequencies can be separated by many orders of magnitude. We
note that in the circuit-QED realization considered here, the
ratio ωA/ωB is about 10 to 100, which is much smaller than in a
typical optomechanical system. It is therefore less challenging
to reach the resolved sideband regime in the circuit-QED
system introduced here.
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Thus we can choose the quality factors of superconducting
transmission-line resonators, which are mainly determined by
the capacitive coupling between the resonator and the external
transmission line. These capacitors, denoted by CA and CB in
Fig. 1, give rise to an external dissipation rate κext. This is, of
course, also the natural port for driving and reading out the state
of the resonators. The internal dissipation, for example due to
resistive and dielectric losses in the resonator, can be made
small and the internal dissipation rate is thus usually negligible
compared to the external dissipation rate, κint 	 κext. The
total dissipation rate of a resonator is therefore κ = κint +
κext ≈ κext. Experiments have demonstrated that quality factors
exceeding 10 000 are readily achievable [61]. Resonators that
are terminated by a SQUID device, as is the case with resonator
A, can in principle suffer from additional energy loss through
the SQUID, corresponding to an increase of the internal decay
rate. However, experiments have demonstrated that also this
kind of device can be readily manufactured with quality factors
between 5000 and 10 000 [47], and that the quality factors of
such resonators are not significantly decreased when the bias
point is rapidly changed. This indicates that decay rates for the
resonators considered here can be made much smaller than
the frequencies of both resonators, κA,κB 	 ωA,ωB . However,
the external decay rate can be designed in the fabrication
process, and it is also possible to selectively make κA or κB

larger or smaller than the relevant resonator frequencies, ωA

and ωB . It should therefore also be possible to realize, for
example, the “reversed dissipation regime” (where κB 
 κA)
considered in Ref. [62].

VI. ARRAYS OF COUPLED RESONATORS

Using the nonlinear coupling mechanism for microwave
resonators that we have investigated here, it is straightforward
to imagine all-electrical networks, or arrays, of analog op-
tomechanical resonators. Superstructures of optomechanical
systems, for example optomechanical crystal arrays [63],
have recently received considerable attention [64] for their
potential applications in quantum information processing [65]
and quantum simulation [66,67]. Implementing such systems
with the all-electrical SQUID-coupled resonators considered
here could have advantages in terms of designability, coupling
strengths, and in situ controllability. Also, since all resonators
in this architecture are electrical, they could all be probed
and driven using the same microwave technologies. It is also
relatively easy to construct various topologies among the
coupled resonators, as we show below.

In a network of linearly coupled optomechanical systems,
we can write the Hamiltonian for a single unit consisting of
two nonlinearly coupled resonators as

Hi/� = ω
(i)
A a

†
i ai + ω

(i)
B b

†
i bi − gia

†
i ai(bi + b

†
i )

+ ε
(i)
A (ai + a

†
i ) + ε

(i)
B (bi + b

†
i ), (55)

where we have included driving fields applied to the two
resonators, with amplitudes ε

(i)
A and ε

(i)
B , for resonator A

and B, respectively. Apart from the additional driving fields,
this Hamiltonian has the form of the effective Hamiltonian
Eq. (30). The driving fields can be easily applied via the
capacitive coupling to the external transmission lines.

(a)

(b)

(c)

FIG. 7. (Color online) Three possible networks of nonlinearly
coupled microwave resonators. These circuits represent all-electrical
networks of resonators that are analogous to arrays of optomechanical
systems. The electrical implementation here replaces the mechanical
resonator with an electrical resonator, while keeping the nonlinear
interaction. With different layouts it is possible to create networks
where the “mechanical” (a), “optical” (b), or both (c) systems are
coupled.

The Hamiltonian of a general linearly coupled nearest-
neighbor array of these unit systems can then be written of
the form

H =
∑

i

Hi + J
∑
〈i,j〉

(a†
i aj + aia

†
j )

+K
∑
〈i,j〉

(b†i bj + bib
†
j ). (56)

Here K and J are the strengths of the linear coupling between
resonators in different unit cells. In the case of electrical
resonators, this type of coupling is realized using capacitive
coupling between the resonators, and the strength of the
coupling can be controlled in the design of the corresponding
capacitances. Whether either or both of K and J are nonzero in
a particular implementation depends on the layout. In Fig. 7,
three possible layouts are shown schematically. The layout
in Fig. 7(a) is a realization of a system described by the
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Hamiltonian Eq. (56) with J = 0 and K > 0 (i.e., coupled
“mechanical” systems), Fig. 7(b) is a realization of a system
with K = 0 and J > 0 (i.e., coupled “optical” systems), and
Fig. 7(c) is a realization of a system where both J > 0 and
K > 0 (i.e., both the mechanical and the optical systems are
coupled).

VII. CONCLUSIONS

We have introduced and analyzed a nonlinear coupling
mechanism for superconducting microwave resonators. With
the proposed coupling scheme, it is possible to realize analogs
of optomechanical systems in an all-electrical circuit. The
optomechanical-like interaction can be made both strong
and tunable through an externally applied flux bias. This
all-electrical realization of optomechanical-like systems could
therefore be used to explore the optomechanical model in

new interesting regimes. We have also discussed potential
applications of this circuit realization of the optomechanical
model as an alternative way of implementing arrays of
“optomechanical” systems, which can be used, for example, in
quantum simulator applications. We believe that the introduced
nonlinear coupling provides new opportunities for implement-
ing analogs of quantum systems in superconducting circuits.
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[55] P. Lähteenmäki, G. S. Paraoanu, J. Hassel, and P. J. Hakonen,
Proc. Natl. Acad. Sci. USA 110, 4234 (2013).

[56] P. D. Nation, J. R. Johansson, M. P. Blencowe, and F. Nori, Rev.
Mod. Phys. 84, 1 (2012).

[57] B. Yurke and J. S. Denker, Phys. Rev. A 29, 1419 (1984).
[58] M. Devoret, Quantum Fluctuations in Electrical Circuits, Les

Houches LXIII (Elsevier, Amsterdam, 1995).
[59] S. Mancini and P. Tombesi, Phys. Rev. A 49, 4055 (1994).
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