59 research outputs found

    Extracting the Temperature of Hot Carriers in Time- and Angle-Resolved Photoemission

    Full text link
    The interaction of light with a material's electronic system creates an out-of-equilibrium (non-thermal) distribution of optically excited electrons. Non-equilibrium dynamics relaxes this distribution on an ultrafast timescale to a hot Fermi-Dirac distribution with a well-defined temperature. The advent of time- and angle-resolved photoemission spectroscopy (TR-ARPES) experiments has made it possible to track the decay of the temperature of the excited hot electrons in selected states in the Brillouin zone, and to reveal their cooling in unprecedented detail in a variety of emerging materials. It is, however, not a straightforward task to determine the temperature with high accuracy. This is mainly attributable to an a priori unknown position of the Fermi level and the fact that the shape of the Fermi edge can be severely perturbed when the state in question is crossing the Fermi energy. Here, we introduce a method that circumvents these difficulties and accurately extracts both the temperature and the position of the Fermi level for a hot carrier distribution by tracking the occupation statistics of the carriers measured in a TR-ARPES experiment.Comment: 17 pages, 5 figure

    Detecting the local transport properties and the dimensionality of transport of epitaxial graphene by a multi-point probe approach

    Full text link
    The electronic transport properties of epitaxial monolayer graphene (MLG) and hydrogen-intercalated quasi free-standing bilayer graphene (QFBLG) on SiC(0001) are investigated by micro multi-point probes. Using a probe with 12 contacts, we perform four-point probe measurements with the possibility to effectively vary the contact spacing over more than one order of magnitude, allowing us to establish that the transport is purely two-dimensional. Combined with the carrier density obtained by angle-resolved photoemission spectroscopy, we find the room temperature mobility of MLG to be (870+-120)cm2/Vs. The transport in QFBLG is also found to be two-dimensional with a mobility of (1600+-160) cm2/Vs

    Ramifications of Optical Pumping on the Interpretation of Time-Resolved Photoemission Experiments on Graphene

    Get PDF
    In pump-probe time and angle-resolved photoemission spectroscopy (TR-ARPES) experiments the presence of the pump pulse adds a new level of complexity to the photoemission process in comparison to conventional ARPES. This is evidenced by pump-induced vacuum space-charge effects and surface photovoltages, as well as multiple pump excitations due to internal reflections in the sample-substrate system. These processes can severely affect a correct interpretation of the data by masking the out-of-equilibrium electron dynamics intrinsic to the sample. In this study, we show that such effects indeed influence TR-ARPES data of graphene on a silicon carbide (SiC) substrate. In particular, we find a time- and laser fluence-dependent spectral shift and broadening of the acquired spectra, and unambiguously show the presence of a double pump excitation. The dynamics of these effects is slower than the electron dynamics in the graphene sample, thereby permitting us to deconvolve the signals in the time domain. Our results demonstrate that complex pump-related processes should always be considered in the experimental setup and data analysis.Comment: 9 pages, 4 figure

    Ultrafast Dynamics of Massive Dirac Fermions in Bilayer Graphene

    Get PDF
    Bilayer graphene is a highly promising material for electronic and optoelectronic applications since it is supporting massive Dirac fermions with a tuneable band gap. However, no consistent picture of the gap's effect on the optical and transport behavior has emerged so far, and it has been proposed that the insulating nature of the gap could be compromised by unavoidable structural defects, by topological in-gap states, or that the electronic structure could be altogether changed by many-body effects. Here we directly follow the excited carriers in bilayer graphene on a femtosecond time scale, using ultrafast time- and angle-resolved photoemission. We find a behavior consistent with a single-particle band gap. Compared to monolayer graphene, the existence of this band gap leads to an increased carrier lifetime in the minimum of the lowest conduction band. This is in sharp contrast to the second sub-state of the conduction band, in which the excited electrons decay through fast, phonon-assisted inter-band transitions.Comment: 5 pages, 4 figure

    Ginnerup Revisited. New Excavations at a Key Neolithic Site on Djursland, Denmark

    Get PDF
    New excavations of an enclosure-related site at Ginnerup on Djursland, Denmark, in 2020 resulted in the identification of several features containing depositions of marine shells. One of these, A4, is a natural depression with a fill comprised of four consecutively deposited layers, forming an undisturbed stratigraphy, dated by several 14C dates to between c. 3150 and 2950 BC. The oldest layer contained finds from phase MN A Ib of the Funnel Beaker culture, while the remaining three layers yielded finds from the latest Funnel Beaker culture on Djursland (MN A II/III, Ferslev style) with an upwardly increasing content of Pitted Ware culture elements, thereby allowing the emergence of this culture in Denmark to be followed for the first time. Preservation conditions for organic material were excellent due to a content of marine shells, mainly from oysters and mussels, in all layers. In this preliminary account, a survey of the material culture in the four layers is presented, together with 14C dates, zoological investigations of mammal and fish bones, isotope analyses (d13C, d15N and d34S) and aDNA analyses of mammal bones and examinations of plant macro-remains. The abundant bones of wild horses also hold a huge potential for zoological and genetic studies, the results of which can qualify the ongoing debate about the rewilding of horses in present-day Europe

    Direct view on the ultrafast carrier dynamics in graphene

    Full text link
    The ultrafast dynamics of excited carriers in graphene is closely linked to the Dirac spectrum and plays a central role for many electronic and optoelectronic applications. Harvesting energy from excited electron-hole pairs, for instance, is only possible if these pairs can be separated before they lose energy to vibrations, merely heating the lattice. While the hot carrier dynamics in graphene could so far only be accessed indirectly, we here present a direct time-resolved view on the Dirac cone by angle-resolved photoemission (ARPES). This allows us to show the quasi-instant thermalisation of the electron gas to a temperature of more than 2000 K; to determine the time-resolved carrier density; to disentangle the subsequent decay into excitations of optical phonons and acoustic phonons (directly and via supercollisions); and to show how the presence of the hot carrier distribution affects the lifetime of the states far below the Fermi energy.Comment: 15 pages, 4 figure

    Co-expression patterns of cancer associated fibroblast markers reveal distinct subgroups related to patient survival in oropharyngeal squamous cell carcinoma

    Get PDF
    Background: The incidence of oropharyngeal squamous cell carcinoma (OPSCC) is rapidly increasing in high income countries due to its association with persistent high-risk human papilloma virus (HPV) infection. Recent scientific advances have highlighted the importance of the tumor microenvironment in OPSCC. In this study, including 216 OPSCC patients, we analyze the composition of four established markers of cancer associated fibroblasts (CAFs) in the context of intratumoral CD8 T-cell infiltration.Methods: Immunohistochemical staining for fibroblast activation protein (FAP), platelet-derived growth factor receptor beta (PDGFRb), periostin, alpha smooth muscle actin (α-SMA) and CD8 were analyzed digitally and their association with survival, tumor- and patient characteristics was assessed.Results: Co-expression of CAF markers was frequent but not associated with HPV status. FAPhigh and PDGFRbhigh expression were associated with increased CD8 T-cell infiltration. Low expression of PDGFRb improved patient survival in female patients but not in male patients. We identified PDGFRblow periostinlow α-SMAlow status as an independent predictor of improved survival (hazard ratio 0.377, p = 0.006).Conclusion: These findings elucidate the co-expression of four established CAF markers in OPSCC and underscore their association with T-cell infiltration and patient survival. Future analyses of CAF subgroups in OPSCC may enable the development of individualized therapies

    The number of tree species on Earth

    Get PDF
    One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global groundsourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are 73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness
    • …
    corecore