11 research outputs found
Better knowledge on vitamin D and calcium in older people is associated with a higher serum vitamin D level and a higher daily dietary calcium intake
Abstract:
Objective: The objective of the present study was to examine knowledge on vitamin D and calcium in a cohort of older adults and to test the association between health knowledge, vitamin D status and dietary calcium intake.
Methods: The participants of this cross-sectional survey consisted of 426 individuals (≥65 years), living in residential homes. Participants were tested for their knowledge on vitamin D and calcium using a standardized questionnaire. Serum 25-hydroxyvitamin D3 (25(OH)D3) levels and dietary calcium intake were measured.
Results: The mean serum 25(OH)D3 level was 39.1 (±21.4) nmol/l and the mean daily dietary calcium intake was 826 (±242) mg/day. Of the participants, only 3
A role for subchondral bone changes in the process of osteoarthritis; a micro-CT study of two canine models
BACKGROUND: This study evaluates changes in peri-articular bone in two canine models for osteoarthritis: the groove model and the anterior cruciate ligament transection (ACLT) model. METHODS: Evaluation was performed at 10 and 20 weeks post-surgery and in addition a 3-weeks time point was studied for the groove model. Cartilage was analysed, and architecture of the subchondral plate and trabecular bone of epiphyses was quantified using micro-CT. RESULTS: At 10 and 20 weeks cartilage histology and biochemistry demonstrated characteristic features of osteoarthritis in both models (very mild changes at 3 weeks). The groove model presented osteophytes only at 20 weeks, whereas the ACLT model showed osteophytes already at 10 weeks. Trabecular bone changes in the groove model were small and not consistent. This contrasts the ACLT model in which bone volume fraction was clearly reduced at 10 and 20 weeks (15-20%). However, changes in metaphyseal bone indicate unloading in the ACLT model, not in the groove model. For both models the subchondral plate thickness was strongly reduced (25-40%) and plate porosity was strongly increased (25-85%) at all time points studied. CONCLUSION: These findings show differential regulation of subchondral trabecular bone in the groove and ACLT model, with mild changes in the groove model and more severe changes in the ACLT model. In the ACLT model, part of these changes may be explained by unloading of the treated leg. In contrast, subchondral plate thinning and increased porosity were very consistent in both models, independent of loading conditions, indicating that this thinning is an early response in the osteoarthritis process
Oestrogen is important for maintenance of cartilage and subchondral bone in a murine model of knee osteoarthritis
Introduction: Oestrogen depletion may influence onset and/or progression of osteoarthritis. We investigated in an ovariectomized mouse model the impact of oestrogen loss and oestrogen supplementation on articular cartilage and subchondral bone in tibia and patella, and assessed bone changes in osteoarthritis development.Methods: C3H/HeJ mice were divided into four groups: sham-operated, oestrogen depletion by ovariectomy (OVX), OVX with estradiol supplementation (OVX+E) and OVX with bisphosphonate (OVX+BP). Each mouse had one knee injected with low-dose iodoacetate (IA), and the contralateral knee was injected with saline. Cartilage was analysed histologically 12 weeks postsurgery; bone changes were monitored over time using in vivo micro-computed tomography.Results: In tibiae, OVX alone failed to induce cartilage damage, but OVX and IA combination significantly induced cartilage damage. In patellae, OVX alone induced significant cartilage damage, whic
Intrinsic differentiation potential of adolescent human tendon tissue: an in-vitro cell differentiation study
BACKGROUND: Tendinosis lesions show an increase of glycosaminoglycan amount, calcifications, and lipid accumulation. Therefore, altered cellular differentiation might play a role in the etiology of tendinosis. This study investigates whether adolescent human tendon tissue contains a population of cells with intrinsic differentiation potential. METHODS: Cells derived from adolescent non-degenerative hamstring tendons were characterized by immunohistochemistry and FACS-analysis. Cells were cultured for 21 days in osteogenic, adipogenic, and chondrogenic medium and phenotypical evaluation was carried out by immunohistochemical and qPCR analysis. The results were compared with the results of similar experiments on adult bone marrow-derived stromal cells (BMSCs). RESULTS: Tendon-derived cells stained D7-FIB (fibroblast-marker) positive, but α-SMA (marker for smooth muscle cells and pericytes) negative. Tendon-derived cells were 99% negative for CD34 (endothelial cell marker), and 73% positive for CD105 (mesenchymal progenitor-cell marker). In adipogenic medium, intracellular lipid vacuoles were visible and tendon-derived fibroblasts showed upregulation of adipogenic markers FABP4 (fatty-acid binding protein 4) and PPARG (peroxisome proliferative activated receptor γ). In chondrogenic medium, some cells stained positive for collagen 2 and tendon-derived fibroblasts showed upregulation of collagen 2 and collagen 10. In osteogenic medium Von Kossa staining showed calcium deposition although osteogenic markers remained unaltered. Tendon-derived cells and BMCSs behaved largely comparable, although some distinct differences were present between the two cell populations. CONCLUSION: This study suggests that our population of explanted human tendon cells has an intrinsic differentiation potential. These results support the hypothesis that there might be a role for altered tendon-cell differentiation in the pathophysiology of tendinosis
Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study
Background: Although pulsed electromagnetic field (PEMF) stimulation may be clinically beneficial during fracture healing and for a wide range of bone disorders, there is still debate on its working mechanism. Mesenchymal stem cells are likely mediators facilitating the observed clinical effects of PEMF. Here, we performed in vitro experiments to investigate the effect of PEMF stimulation on human bone marrow-derived stromal cell (BMSC) metabolism and, specifically, whether PEMF can stimulate their osteogenic differentiation. Methods: BMSCs derived from four different donors were cultured in osteogenic medium, with the PEMF treated group being continuously exposed to a 15 Hz, 1 Gauss EM field, consisting of 5-millisecond bursts with 5-microsecond pulses. On culture day 1, 5, 9, and 14, cells were collected for biochemical analysis (DNA amount, alkaline phosphatase activity, calcium deposition), expression of various osteoblast-relevant genes and activation of extracellular signal-regulated kinase (ERK) signaling. Differences between treated and control groups were analyzed using the Wilcoxon signed rank test, and considered significant when p < 0.05. Results: Biochemical analysis revealed significant, differentiation stage-dependent, PEMF-induced differences: PEMF increased mineralization at day 9 and 14, without altering alkaline phosphatase activity. Cell proliferation, as measured by DNA amounts, was not affected by PEMF until day 14. Here, DNA content stagnated in PEMF treated group, resulting in less DNA compared to control. Quantitative RT-PCR revealed that during early culture, up to day 9, PEMF treatment increased mRNA levels of bone morphogenetic protein 2, transforming growth factor-beta 1, osteoprotegerin, matrix metalloproteinase-1 and-3, osteocalcin, and bone sialoprotein. In contrast, receptor activator of NF-B ligand expression was primarily stimulated on day 14. ERK1/2 phosphorylation was not affected by PEMF stimulation. Conclusions: PEMF exposure of differentiating human BMSCs enhanced mineralization and seemed to induce differentiation at the expense of proliferation. The osteogenic stimulus of PEMF was confirmed by the up-regulation of several osteogenic marker genes in the PEMF treated group, which preceded the deposition of mineral itself. These findings indicate that PEMF can directly stimulate osteoprogenitor cells towards osteogenic differentiation. This supports the theory that PEMF treatment may recruit these cells to facilitate an osteogenic response in vivo. © 2010 Jansen et al; licensee BioMed Central Ltd
GPM6B regulates osteoblast function and induction of mineralization by controlling cytoskeleton and matrix vesicle release
Bone resorption inhibitor alendronate normalizes the reduced bone thickness of TRPV5(-/-) mice.
Contains fulltext :
70385.pdf (publisher's version ) (Open Access)TRPV5 is a Ca(2+)-selective channel involved in transcellular Ca(2+) absorption expressed in kidney and in the ruffled border of osteoclasts. Studies in hypercalciuric TRPV5 knockout (TRPV5(-/-)) mice, which display significantly increased vitamin D levels, showed that TRPV5 ablation increases number and size of osteoclasts but impairs osteoclast-mediated bone resorption. The latter is not in line with the observed decreased bone thickness in TRPV5(-/-) mice. Bisphosphonates also inhibit osteoclast-mediated bone resorption. The aim of this study was to evaluate the effect of alendronate on the expression of the Ca(2+) transporters in bone, kidney, and duodenum and, importantly, the bone phenotype in TRPV5(-/-) mice. Wildtype (TRPV5(+/+)) and TRPV5(-/-) mice were treated during 10 wk with 2 mg/kg alendronate or vehicle weekly and housed in metabolic cages at the end of treatment. Urine and blood samples were taken for biochemical analysis, and duodenum, kidney, and femur were sampled. Expression of Ca(2+) transporters and osteoclast ruffled border transporters in bone and cultured osteoclasts was determined by QPCR analysis. Femurs were scanned using muCT, and resorption pit assays were performed in bone marrow cultures isolated from TRPV5(+/+) and TRPV5(-/-) mice. Alendronate treatment enhanced bone thickness in TRPV5(+/+) mice but also normalized the disturbed bone morphometry parameters in TRPV5(-/-) mice. Bone TRPV5 expression was specifically enhanced by alendronate, whereas the expression of Ca(2+) transporters in kidney and intestine was not altered. The expression of the osteoclast ruffled border membrane proteins chloride channel 7 (CLC-7) and the vacuolar H(+)-ATPase did not differ between both genotypes, but alendronate significantly enhanced the expression and PTH levels in TRPV5(-/-) mice. The expression of TRPV5, CLC-7, and H(+)-ATPase in osteoclast cultures was not affected by alendronate. The number of resorption pits was reduced in TRPV5(-/-) bone marrow cultures, but the response to vitamin D was similar to that in TRPV5(+/+) cultures. The alendronate-induced upregulation of TRPV5 in bone together with the decreased resorptive capacity of TRPV5(-/-) osteoclasts in vitro suggests that TRPV5 has an important role in osteoclast function. However, our data indicate that significant bone resorption still occurs in TRPV5(-/-) mice, because alendronate treatment normalized bone thickness in these mice. Thus, TRPV5(-/-) mice are able to rescue the resulting defect in osteoclast-mediated bone resorption, possibly mediated by the long-term hypervitaminosis D or other (non)hormonal compensatory mechanisms
Calcifying vascular smooth muscle cells and osteoblasts: independent cell types exhibiting extracellular matrix and biomineralization-related mimicries
Mucin 1 (Muc1) Deficiency in Female Mice Leads to Temporal Skeletal Changes During Aging
Mucin1 (MUC1) encodes a glycoprotein that has been demonstrated to have important roles in cell-cell interactions, cell-matrix interactions, cell signaling, modulating tumor progression and metastasis, and providing physical protection to cells against pathogens. In this study, we investigated the bone phenotype in female C57BL/6 Muc1 null mice and the impact of the loss of Muc1 on osteoblasts and osteoclasts. We found that deletion of Muc1 results in reduced trabecular bone volume in 8-week-old mice compared with wild-type controls, but the trabecular bone volume fraction normalizes with increasing age. In mature female mice (16 weeks old), Muc1 deletion results in stiffer femoral bones with fewer osteoblasts lining the trabecular surface but increased endosteal mineralized surface and bone formation rate. The latter remains higher compared with wild-type females at age 52 weeks. No difference was found in osteoclast numbers in vivo and in bone marrow osteoblast or osteoclast differentiation capacity or activity in vitro. Taken together, these results suggest that Muc1 depletion causes a transiently reduced trabecular bone mass phenotype in young mice, and later in life reduced numbers of osteoblasts with increased endocortical mineralization activity coincides with unaffected total bone mass and increased stiffness. In conclusion, our results show, for the first time to our knowledge, a role for Muc1 in bone mass and mineralization in mice in a time-dependent manner. (C) 2018 The Authors JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research
