94 research outputs found
Solving the Canonical Representation and Star System Problems for Proper Circular-Arc Graphs in Log-Space
We present a logspace algorithm that constructs a canonical intersection
model for a given proper circular-arc graph, where `canonical' means that
models of isomorphic graphs are equal. This implies that the recognition and
the isomorphism problems for this class of graphs are solvable in logspace. For
a broader class of concave-round graphs, that still possess (not necessarily
proper) circular-arc models, we show that those can also be constructed
canonically in logspace. As a building block for these results, we show how to
compute canonical models of circular-arc hypergraphs in logspace, which are
also known as matrices with the circular-ones property. Finally, we consider
the search version of the Star System Problem that consists in reconstructing a
graph from its closed neighborhood hypergraph. We solve it in logspace for the
classes of proper circular-arc, concave-round, and co-convex graphs.Comment: 19 pages, 3 figures, major revisio
Average-case intractability vs. worst-case intractability
AbstractWe show that not all sets in NP (or other levels of the polynomial-time hierarchy) have efficient average-case algorithms unless the Arthur-Merlin classes MA and AM can be derandomized to NP and various subclasses of P/poly collapse to P. Furthermore, other complexity classes like P(PP) and PSPACE are shown to be intractable on average unless they are easy in the worst case
- …