1 research outputs found

    Seed-specific elevation of non-symbiotic hemoglobin AtHb1: beneficial effects and underlying molecular networks in Arabidopsis thaliana

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Seed metabolism is dynamically adjusted to oxygen availability. Processes underlying this auto-regulatory mechanism control the metabolic efficiency under changing environmental conditions/stress and thus, are of relevance for biotechnology. Non-symbiotic hemoglobins have been shown to be involved in scavenging of nitric oxide (NO) molecules, which play a key role in oxygen sensing/balancing in plants and animals. Steady state levels of NO are suggested to act as an integrator of energy and carbon metabolism and subsequently, influence energy-demanding growth processes in plants.</p> <p>Results</p> <p>We aimed to manipulate oxygen stress perception in <it>Arabidopsis </it>seeds by overexpression of the non-symbiotic hemoglobin <it>AtHb1 </it>under the control of the seed-specific LeB4 promoter. Seeds of transgenic <it>AtHb1 </it>plants did not accumulate NO under transient hypoxic stress treatment, showed higher respiratory activity and energy status compared to the wild type. Global transcript profiling of seeds/siliques from wild type and transgenic plants under transient hypoxic and standard conditions using Affymetrix ATH1 chips revealed a rearrangement of transcriptional networks by <it>AtHb1 </it>overexpression under non-stress conditions, which included the induction of transcripts related to ABA synthesis and signaling, receptor-like kinase- and MAP kinase-mediated signaling pathways, WRKY transcription factors and ROS metabolism. Overexpression of <it>AtHb1 </it>shifted seed metabolism to an energy-saving mode with the most prominent alterations occurring in cell wall metabolism. In combination with metabolite and physiological measurements, these data demonstrate that <it>AtHb1 </it>overexpression improves oxidative stress tolerance compared to the wild type where a strong transcriptional and metabolic reconfiguration was observed in the hypoxic response.</p> <p>Conclusions</p> <p><it>AtHb1 </it>overexpression mediates a pre-adaptation to hypoxic stress. Under transient stress conditions transgenic seeds were able to keep low levels of endogenous NO and to maintain a high energy status, in contrast to wild type. Higher weight of mature transgenic seeds demonstrated the beneficial effects of seed-specific overexpression of <it>AtHb1</it>.</p
    corecore