341 research outputs found

    Hypoglycemia in Critically Ill Patients

    Get PDF

    Clinical value of an arterial pressure-based cardiac output measurement device

    Get PDF
    Contains fulltext : 69115.pdf ( ) (Open Access

    Hyperoxia after cardiac arrest may not increase ischemia-reperfusion injury

    Get PDF
    In the last decade, moderate hypothermia has become the mainstay of treatment in the post-resuscitation period. However, for the damaged brain, optimizing oxygen transport, including arterial oxygenation, may also be important. The current view states that hyperoxia in the immediate post-resuscitation period may worsen cerebral outcome, and international guidelines recommend a target arterial oxygen saturation of 94% to 98%. An article in the previous issue of Critical Care challenges this viewpoint. In an elegant study using a Cox proportional hazards model combined with sensitivity analyses and time period matching, the authors show no independent association between hyperoxia and in-hospital mortality. The present commentary discusses these contradictory findings and suggests a practical solution to solve these differences

    Bench-to-bedside review: Hypercapnic acidosis in lung injury - from 'permissive' to 'therapeutic'

    Get PDF
    Modern ventilation strategies for patients with acute lung injury and acute respiratory distress syndrome frequently result in hypercapnic acidosis (HCA), which is regarded as an acceptable side effect ('permissive hypercapnia'). Multiple experimental studies have demonstrated advantageous effects of HCA in several lung injury models. To date, however, human trials studying the effect of carbon dioxide per se on outcome in patients with lung injury have not been performed. While significant concerns regarding HCA remain, in particular the possible unfavorable effects on bacterial killing and the inhibition of pulmonary epithelial wound repair, the potential for HCA in attenuating lung injury is promising. The underlying mechanisms by which HCA exerts its protective effects are complex, but dampening of the inflammatory response seems to play a pivotal role. After briefly summarizing the physiological effects of HCA, a critical analysis of the available evidence on the potential beneficial effects of therapeutic HCA from in vitro, ex vivo and in vivo lung injury models and from human studies will be reviewed. In addition, the potential concerns in the clinical setting will be outlined

    Intravenous magnesium in subarachnoid hemorrhage

    Get PDF
    Contains fulltext : 97062.pdf (publisher's version ) (Open Access

    The nature of unmeasured anions in critically ill patients

    Get PDF
    Contains fulltext : 70719.pdf ( ) (Open Access

    Comparison of cooling methods to induce and maintain normo- and hypothermia in intensive care unit patients: a prospective intervention study

    Get PDF
    Contains fulltext : 52086.pdf ( ) (Open Access)BACKGROUND: Temperature management is used with increased frequency as a tool to mitigate neurological injury. Although frequently used, little is known about the optimal cooling methods for inducing and maintaining controlled normo- and hypothermia in the intensive care unit (ICU). In this study we compared the efficacy of several commercially available cooling devices for temperature management in ICU patients with various types of neurological injury. METHODS: Fifty adult ICU patients with an indication for controlled mild hypothermia or strict normothermia were prospectively enrolled. Ten patients in each group were assigned in consecutive order to conventional cooling (that is, rapid infusion of 30 ml/kg cold fluids, ice and/or coldpacks), cooling with water circulating blankets, air circulating blankets, water circulating gel-coated pads and an intravascular heat exchange system. In all patients the speed of cooling (expressed as degrees C/h) was measured. After the target temperature was reached, we measured the percentage of time the patient's temperature was 0.2 degrees C below or above the target range. Rates of temperature decline over time were analyzed with one-way analysis of variance. Differences between groups were analyzed with one-way analysis of variance, with Bonferroni correction for multiple comparisons. A p < 0.05 was considered statistically significant. RESULTS: Temperature decline was significantly higher with the water-circulating blankets (1.33 +/- 0.63 degrees C/h), gel-pads (1.04 +/- 0.14 degrees C/h) and intravascular cooling (1.46 +/- 0.42 degrees C/h) compared to conventional cooling (0.31 +/- 0.23 degrees C/h) and the air-circulating blankets (0.18 +/- 0.2 degrees C/h) (p < 0.01). After the target temperature was reached, the intravascular cooling device was 11.2 +/- 18.7% of the time out of range, which was significantly less compared to all other methods. CONCLUSION: Cooling with water-circulating blankets, gel-pads and intravascular cooling is more efficient compared to conventional cooling and air-circulating blankets. The intravascular cooling system is most reliable to maintain a stable temperature
    corecore