207 research outputs found

    Clinical value of an arterial pressure-based cardiac output measurement device

    Get PDF
    Contains fulltext : 69115.pdf ( ) (Open Access

    Hyperoxia after cardiac arrest may not increase ischemia-reperfusion injury

    Get PDF
    In the last decade, moderate hypothermia has become the mainstay of treatment in the post-resuscitation period. However, for the damaged brain, optimizing oxygen transport, including arterial oxygenation, may also be important. The current view states that hyperoxia in the immediate post-resuscitation period may worsen cerebral outcome, and international guidelines recommend a target arterial oxygen saturation of 94% to 98%. An article in the previous issue of Critical Care challenges this viewpoint. In an elegant study using a Cox proportional hazards model combined with sensitivity analyses and time period matching, the authors show no independent association between hyperoxia and in-hospital mortality. The present commentary discusses these contradictory findings and suggests a practical solution to solve these differences

    Acetazolamide-mediated decrease in strong ion difference accounts for the correction of metabolic alkalosis in critically ill patients

    Get PDF
    INTRODUCTION: Metabolic alkalosis is a commonly encountered acid–base derangement in the intensive care unit. Treatment with the carbonic anhydrase inhibitor acetazolamide is indicated in selected cases. According to the quantitative approach described by Stewart, correction of serum pH due to carbonic anhydrase inhibition in the proximal tubule cannot be explained by excretion of bicarbonate. Using the Stewart approach, we studied the mechanism of action of acetazolamide in critically ill patients with a metabolic alkalosis. METHODS: Fifteen consecutive intensive care unit patients with metabolic alkalosis (pH ≥ 7.48 and HCO(3)(- )≥ 28 mmol/l) were treated with a single administration of 500 mg acetazolamide intravenously. Serum levels of strong ions, creatinine, lactate, weak acids, pH and partial carbon dioxide tension were measured at 0, 12, 24, 48 and 72 hours. The main strong ions in urine and pH were measured at 0, 3, 6, 12, 24, 48 and 72 hours. Strong ion difference (SID), strong ion gap, sodium–chloride effect, and the urinary SID were calculated. Data (mean ± standard error were analyzed by comparing baseline variables and time dependent changes by one way analysis of variance for repeated measures. RESULTS: After a single administration of acetazolamide, correction of serum pH (from 7.49 ± 0.01 to 7.46 ± 0.01; P = 0.001) was maximal at 24 hours and sustained during the period of observation. The parallel decrease in partial carbon dioxide tension was not significant (from 5.7 ± 0.2 to 5.3 ± 0.2 kPa; P = 0.08) and there was no significant change in total concentration of weak acids. Serum SID decreased significantly (from 41.5 ± 1.3 to 38.0 ± 1.0 mEq/l; P = 0.03) due to an increase in serum chloride (from 105 ± 1.2 to 110 ± 1.2 mmol/l; P < 0.0001). The decrease in serum SID was explained by a significant increase in the urinary excretion of sodium without chloride during the first 24 hours (increase in urinary SID: from 48.4 ± 15.1 to 85.3 ± 7.7; P = 0.02). CONCLUSION: A single dose of acetazolamide effectively corrects metabolic alkalosis in critically ill patients by decreasing the serum SID. This effect is completely explained by the increased renal excretion ratio of sodium to chloride, resulting in an increase in serum chloride

    Bench-to-bedside review: Hypercapnic acidosis in lung injury - from 'permissive' to 'therapeutic'

    Get PDF
    Modern ventilation strategies for patients with acute lung injury and acute respiratory distress syndrome frequently result in hypercapnic acidosis (HCA), which is regarded as an acceptable side effect ('permissive hypercapnia'). Multiple experimental studies have demonstrated advantageous effects of HCA in several lung injury models. To date, however, human trials studying the effect of carbon dioxide per se on outcome in patients with lung injury have not been performed. While significant concerns regarding HCA remain, in particular the possible unfavorable effects on bacterial killing and the inhibition of pulmonary epithelial wound repair, the potential for HCA in attenuating lung injury is promising. The underlying mechanisms by which HCA exerts its protective effects are complex, but dampening of the inflammatory response seems to play a pivotal role. After briefly summarizing the physiological effects of HCA, a critical analysis of the available evidence on the potential beneficial effects of therapeutic HCA from in vitro, ex vivo and in vivo lung injury models and from human studies will be reviewed. In addition, the potential concerns in the clinical setting will be outlined

    Intravenous magnesium in subarachnoid hemorrhage

    Get PDF
    Contains fulltext : 97062.pdf (publisher's version ) (Open Access

    The nature of unmeasured anions in critically ill patients

    Get PDF
    Contains fulltext : 70719.pdf ( ) (Open Access

    Comparison of cooling methods to induce and maintain normo- and hypothermia in intensive care unit patients: a prospective intervention study

    Get PDF
    Contains fulltext : 52086.pdf ( ) (Open Access)BACKGROUND: Temperature management is used with increased frequency as a tool to mitigate neurological injury. Although frequently used, little is known about the optimal cooling methods for inducing and maintaining controlled normo- and hypothermia in the intensive care unit (ICU). In this study we compared the efficacy of several commercially available cooling devices for temperature management in ICU patients with various types of neurological injury. METHODS: Fifty adult ICU patients with an indication for controlled mild hypothermia or strict normothermia were prospectively enrolled. Ten patients in each group were assigned in consecutive order to conventional cooling (that is, rapid infusion of 30 ml/kg cold fluids, ice and/or coldpacks), cooling with water circulating blankets, air circulating blankets, water circulating gel-coated pads and an intravascular heat exchange system. In all patients the speed of cooling (expressed as degrees C/h) was measured. After the target temperature was reached, we measured the percentage of time the patient's temperature was 0.2 degrees C below or above the target range. Rates of temperature decline over time were analyzed with one-way analysis of variance. Differences between groups were analyzed with one-way analysis of variance, with Bonferroni correction for multiple comparisons. A p < 0.05 was considered statistically significant. RESULTS: Temperature decline was significantly higher with the water-circulating blankets (1.33 +/- 0.63 degrees C/h), gel-pads (1.04 +/- 0.14 degrees C/h) and intravascular cooling (1.46 +/- 0.42 degrees C/h) compared to conventional cooling (0.31 +/- 0.23 degrees C/h) and the air-circulating blankets (0.18 +/- 0.2 degrees C/h) (p < 0.01). After the target temperature was reached, the intravascular cooling device was 11.2 +/- 18.7% of the time out of range, which was significantly less compared to all other methods. CONCLUSION: Cooling with water-circulating blankets, gel-pads and intravascular cooling is more efficient compared to conventional cooling and air-circulating blankets. The intravascular cooling system is most reliable to maintain a stable temperature

    Intensive insulin therapy does not alter the inflammatory response in patients undergoing coronary artery bypass grafting: a randomized controlled trial [ISRCTN95608630]

    Get PDF
    INTRODUCTION: Strict control of plasma glucose in diabetic and non-diabetic patients has been shown to improve outcome in several clinical settings. There is extensive evidence that glucose can stimulate the production of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α and IL-6, with no effect on the anti-inflammatory cytokine IL-10. We hypothesized that strict glucose regulation results in a change in cytokine balance from a pro-inflammatory state to a more balanced anti-inflammatory condition. In a randomized controlled trial we studied the effect of strict glycemic control on the local and systemic pro-inflammatory and anti-inflammatory balance in non-diabetic patients undergoing elective coronary artery bypass grafting with cardiopulmonary bypass. METHODS: After surgery patients were randomly assigned to intensive insulin therapy (blood glucose between 80 and 110 mg/dl) or conventional insulin therapy (blood glucose less than 200 mg/dl). At 0, 1, 2, 4, 8, 12, 16 and 24 hours after admission to the intensive care unit, plasma samples and samples from the mediastinal drains were obtained. We measured the concentrations of the pro-inflammatory cytokines TNF-α and IL-6 and the anti-inflammatory cytokine IL-10 by enzyme-linked immunosorbent assay. RESULTS: Both patient groups were comparable in demographics, clinical characteristics and peri-operative data. In the intensive treatment group, glucose levels were significantly lower than in the conventionally treated group. No differences were found between both groups in the concentrations of TNF-α, IL-6 and IL-10 in plasma samples or in fluid draining the mediastinal cavity. Levels of IL-6 and IL-10 were significantly higher in mediastinal fluid samples than in plasma samples, suggesting a compartmentalized production of cytokines. CONCLUSION: The protective effect of intensive insulin therapy in patients after cardiac surgery with cardiopulmonary bypass is not related to a change in cytokine balance from a pro-inflammatory to an anti-inflammatory pattern. Systemic cytokine levels are not representative of the local inflammatory response
    corecore