63 research outputs found
Dust formation, evolution, and obscuration effects in the very high-redshift universe
The evolution of dust at redshifts z>9, and consequently the dust properties,
differs greatly from that in the local universe. In contrast to the local
universe, core collapse supernovae (CCSNe) are the only source of
thermally-condensed dust. Because of the low initial dust-to-gas mass ratio,
grain destruction rates are low, so that CCSNe are net producers of
interstellar dust. Galaxies with large initial gas mass or high mass infall
rate will therefore have a more rapid net rate of dust production comported to
galaxies with lower gas mass, even at the same star formation rate. The dust
composition is dominated by silicates, which exhibit a strong rise in the UV
opacity near the Lyman break. This "silicate-UV break" may be confused with the
Lyman break, resulting in a misidentification of a galaxies' photometric
redshift. In this paper we demonstrate these effects by analyzing the spectral
energy distribution (SED) of MACS1149-JD, a lensed galaxy at z=9.6. A potential
2mm counterpart of MACS1149-JD has been identified with GISMO. While additional
observations are required to corroborate this identification, we use this
possible association to illustrate the physical processes and the observational
effects of dust in the very high redshift universe.Comment: Accepted for publication in ApJ Letter
Design and Fabrication Highlights Enabling a 2mm, 128 Element Bolometer Array for GISMO
The design and fabrication of a background limited, 128 pixel Transition Edge Sensor (TES) bolometer array for the Goddard IRAM Super-conducting 2-mm Observer (GISMO) is presented
Submillimeter Observations of CLASH 2882 and the Evolution of Dust in this Galaxy
Two millimeter observations of the MACS J1149.6+2223 cluster have detected a source that was consistent with the location of the lensed MACS 1149-JD galaxy at z = 9.6. A positive identification would have rendered this galaxy as the youngest dust forming galaxy in the universe. Follow up observation with the AzTEC 1.1 mm camera and the IRAM NOrthern Extended Millimeter Array (NOEMA) at 1.3 mm have not confirmed this association. In this paper we show that the NOEMA observations associate the 2 mm source with [PCB2012] 2882, source number 2882 in the Cluster Lensing And Supernova survey with Hubble (CLASH) catalog of MACS J1149.6+2223. This source, hereafter referred to as CLASH 2882, is a gravitationally lensed spiral galaxy at z = 0.99. We combine the Goddard IRAM Superconducting 2-Millimeter Observer (GISMO) 2 mm and NOEMA 1.3 mm fluxes with other (rest frame) UV to far-IR observations to construct the full spectral energy distribution of this galaxy, and derive its star formation history, and stellar and interstellar dust content. The current star formation rate of the galaxy is $54 µ^(-1) M_⊙ yr^(−1), and its dust mass is about 5 × 10^7 µ^(-1) M_⊙, where μ is the lensing magnification factor for this source, which has a mean value of 2.7. The inferred dust mass is higher than the maximum dust mass that can be produced by core collapse supernovae and evolved AGB stars. As with many other star forming galaxies, most of the dust mass in CLASH 2882 must have been accreted in the dense phases of the interstellar medium
CO(1-0) in z ≳ 4 Quasar Host Galaxies: No Evidence for Extended Molecular Gas Reservoirs
We present ^(12)CO(J = 1 → 0) observations of the high-redshift quasi-stellar objects (QSOs) BR 1202-0725 (z = 4.69), PSS J2322+1944 (z = 4.12), and APM 08279+5255 (z = 3.91) using the NRAO Green Bank Telescope (GBT) and the MPIfR Effelsberg 100 m telescope. We detect, for the first time, the CO ground-level transition in BR 1202-0725. For PSS J2322+1944 and APM 08279+5255, our observations result in line fluxes that are consistent with previous NRAO Very Large Array (VLA) observations, but they reveal the full line profiles. We report a typical lensing-corrected velocity-integrated intrinsic ^(12)CO(J = 1 → 0) line luminosity of L'_(CO) = 5 × 10^(10) K km s^(-1) pc^2 and a typical total H_2 mass of M(H_2) = 4 × 10^(10) M_☉ for the sources in our sample. The CO/FIR luminosity ratios of these high-z sources follow the same trend as seen for low-z galaxies, leading to a combined solution of log L_(FIR) = (1.39 ± 0.05) log L_(CO) - 1.76. It has previously been suggested that the molecular gas reservoirs in some quasar host galaxies may exhibit luminous, extended ^(12)CO(J = 1 → 0) components that are not observed in the higher J CO transitions. Using the line profiles and the total intensities of our observations and large velocity gradient (LVG) models based on previous results for higher J CO transitions, we derive that emission from all CO transitions is described well by a single gas component in which all molecular gas is concentrated in a compact nuclear region. Thus, our observations and models show no indication of a luminous extended, low surface brightness molecular gas component in any of the high-redshift QSOs in our sample. If such extended components exist, their contribution to the overall luminosity is limited to at most 30%
First Constraints on Source Counts at 350 Microns
We have imaged a 6 arcminute region in the Bo\"otes Deep Field
using the 350 m-optimised second generation Submillimeter High Angular
Resolution Camera (SHARC II), achieving a peak 1 sensitivity of 5
mJy. We detect three sources above 3, and determine a spurious source
detection rate of 1.09 in our maps. In the absence of detections, we
rely on deep 24 m and 20 cm imaging to deduce which sources are most
likely to be genuine, giving two real sources. From this we derive an integral
source count of 0.84 sources arcmin at mJy,
which is consistent with 350 m source count models that have an
IR-luminous galaxy population evolving with redshift. We use these constraints
to consider the future for ground-based short-submillimetre surveys.Comment: accepted for publication in The Astrophysical Journa
High-sensitivity transition-edge-sensed bolometers: improved speed and characterization with AC and DC bias
We report on efforts to improve the speed of low-G far-infrared
transition-edged-sensed bolometers. We use a fabrication process that does not
require any dry etch steps to reduce heat capacity on the suspended device and
measure a reduction in the detector time constant. However, we also measure an
increase in the temperature-normalized thermal conductance (G), and a
corresponding increase in the noise-equivalent power (NEP). We employ a new
near-IR photon-noise technique using a near-IR laser to calibrate the
frequency-domain multiplexed AC system and compare the results to a
well-understood DC circuit. We measure an NEP white noise level of 0.8 aW/rtHz
with a 1/f knee below 0.1 Hz and a time constant of 3.2 ms.Comment: 27 pages, 16 figures. This article may be downloaded for personal use
only. Any other use requires prior permission of the author and AIP
Publishing. This article appeared in J. Appl. Phys. 134 (9) and may be found
at https://doi.org/10.1063/5.015720
The Primordial Inflation Polarization Explorer (PIPER)
The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne
cosmic microwave background (CMB) polarimeter designed to search for evidence
of inflation by measuring the large-angular scale CMB polarization signal.
BICEP2 recently reported a detection of B-mode power corresponding to the
tensor-to-scalar ratio r = 0.2 on ~2 degree scales. If the BICEP2 signal is
caused by inflationary gravitational waves (IGWs), then there should be a
corresponding increase in B-mode power on angular scales larger than 18
degrees. PIPER is currently the only suborbital instrument capable of fully
testing and extending the BICEP2 results by measuring the B-mode power spectrum
on angular scales = ~0.6 deg to 90 deg, covering both the reionization
bump and recombination peak, with sensitivity to measure the tensor-to-scalar
ratio down to r = 0.007, and four frequency bands to distinguish foregrounds.
PIPER will accomplish this by mapping 85% of the sky in four frequency bands
(200, 270, 350, 600 GHz) over a series of 8 conventional balloon flights from
the northern and southern hemispheres. The instrument has background-limited
sensitivity provided by fully cryogenic (1.5 K) optics focusing the sky signal
onto four 32x40-pixel arrays of time-domain multiplexed Transition-Edge Sensor
(TES) bolometers held at 140 mK. Polarization sensitivity and systematic
control are provided by front-end Variable-delay Polarization Modulators
(VPMs), which rapidly modulate only the polarized sky signal at 3 Hz and allow
PIPER to instantaneously measure the full Stokes vector (I, Q, U, V) for each
pointing. We describe the PIPER instrument and progress towards its first
flight.Comment: 11 pages, 7 figures. To be published in Proceedings of SPIE Volume
9153. Presented at SPIE Astronomical Telescopes + Instrumentation 2014,
conference 915
- …