100 research outputs found

    Spinal cord from body donors is suitable for multicolor immunofluorescence

    Get PDF
    Immunohistochemistry is a powerful tool for studying neuronal tissue from humans at the molecular level. Obtaining fresh neuronal tissue from human organ donors is difficult and sometimes impossible. In anatomical body donations, neuronal tissue is dedicated to research purposes and because of its easier availability, it may be an alternative source for research. In this study, we harvested spinal cord from a single organ donor 2 h (h) postmortem and spinal cord from body donors 24, 48, and 72 h postmortem and tested how long after death, valid multi-color immunofluorescence or horseradish peroxidase (HRP) immunohistochemistry is possible. We used general and specific neuronal markers and glial markers for immunolabeling experiments. Here we showed that it is possible to visualize molecularly different neuronal elements with high precision in the body donor spinal cord 24 h postmortem and the quality of the image data was comparable to those from the fresh organ donor spinal cord. High-contrast multicolor images of the 24-h spinal cords allowed accurate automated quantification of different neuronal elements in the same sample. Although there was antibody-specific signal reduction over postmortem intervals, the signal quality for most antibodies was acceptable at 48 h but no longer at 72 h postmortem. In conclusion, our study has defined a postmortem time window of more than 24 h during which valid immunohistochemical information can be obtained from the body donor spinal cord. Due to the easier availability, neuronal tissue from body donors is an alternative source for basic and clinical research

    Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma

    Get PDF
    Background Immune checkpoint inhibitors targeting programmed cell death 1 (PD1) or its ligand (PD-L1) showed activity in several cancer types. Methods We performed immunohistochemistry for CD3, CD8, CD20, HLA-DR, phosphatase and tensin homolog (PTEN), PD-1, and PD-L1 and pyrosequencing for assessment of the O6-methylguanine-methyltransferase (MGMT) promoter methylation status in 135 glioblastoma specimens (117 initial resection, 18 first local recurrence). PD-L1 gene expression was analyzed in 446 cases from The Cancer Genome Atlas. Results Diffuse/fibrillary PD-L1 expression of variable extent, with or without interspersed epithelioid tumor cells with membranous PD-L1 expression, was observed in 103 of 117 (88.0%) newly diagnosed and 13 of 18 (72.2%) recurrent glioblastoma specimens. Sparse-to-moderate density of tumor-infiltrating lymphocytes (TILs) was found in 85 of 117 (72.6%) specimens (CD3+ 78/117, 66.7%; CD8+ 52/117, 44.4%; CD20+ 27/117, 23.1%; PD1+ 34/117, 29.1%). PD1+ TIL density correlated positively with CD3+ (P < .001), CD8+ (P < .001), CD20+ TIL density (P < .001), and PTEN expression (P = .035). Enrichment of specimens with low PD-L1 gene expression levels was observed in the proneural and G-CIMP glioblastoma subtypes and in specimens with high PD-L1 gene expression in the mesenchymal subtype (P = 5.966e-10). No significant differences in PD-L1 expression or TIL density between initial and recurrent glioblastoma specimens or correlation of PD-L1 expression or TIL density with patient age or outcome were evident. Conclusion TILs and PD-L1 expression are detectable in the majority of glioblastoma samples but are not related to outcome. Because the target is present, a clinical study with specific immune checkpoint inhibitors seems to be warranted in glioblastom

    Distributed changes of the functional connectome in patients with glioblastoma

    Get PDF
    Glioblastoma might have widespread effects on the neural organization and cognitive function, and even focal lesions may be associated with distributed functional alterations. However, functional changes do not necessarily follow obvious anatomical patterns and the current understanding of this interrelation is limited. In this study, we used resting-state functional magnetic resonance imaging to evaluate changes in global functional connectivity patterns in 15 patients with glioblastoma. For six patients we followed longitudinal trajectories of their functional connectome and structural tumour evolution using bi-monthly follow-up scans throughout treatment and disease progression. In all patients, unilateral tumour lesions were associated with inter-hemispherically symmetric network alterations, and functional proximity of tumour location was stronger linked to distributed network deterioration than anatomical distance. In the longitudinal subcohort of six patients, we observed patterns of network alterations with initial transient deterioration followed by recovery at first follow-up, and local network deterioration to precede structural tumour recurrence by two months. In summary, the impact of focal glioblastoma lesions on the functional connectome is global and linked to functional proximity rather than anatomical distance to tumour regions. Our findings further suggest a relevance for functional network trajectories as a possible means supporting early detection of tumour recurrence

    Distinct DNA Methylation Patterns of Subependymal Giant Cell Astrocytomas in Tuberous Sclerosis Complex

    Get PDF
    Tuberous sclerosis complex (TSC) is a monogenic disorder caused by mutations in either the TSC1 or TSC2 gene, two key regulators of the mechanistic target of the rapamycin complex pathway. Phenotypically, this leads to growth and formation of hamartomas in several organs, including the brain. Subependymal giant cell astrocytomas (SEGAs) are low-grade brain tumors commonly associated with TSC. Recently, gene expression studies provided evidence that the immune system, the MAPK pathway and extracellular matrix organization play an important role in SEGA development. However, the precise mechanisms behind the gene expression changes in SEGA are still largely unknown, providing a potential role for DNA methylation. We investigated the methylation profile of SEGAs using the Illumina Infinium HumanMethylation450 BeadChip (SEGAs n = 42, periventricular control n = 8). The SEGA methylation profile was enriched for the adaptive immune system, T cell activation, leukocyte mediated immunity, extracellular structure organization and the ERK1 & ERK2 cascade. More interestingly, we identified two subgroups in the SEGA methylation data and show that the differentially expressed genes between the two subgroups are related to the MAPK cascade and adaptive immune response. Overall, this study shows that the immune system, the MAPK pathway and extracellular matrix organization are also affected on DNA methylation level, suggesting that therapeutic intervention on DNA level could be useful for these specific pathways in SEGA. Moreover, we identified two subgroups in SEGA that seem to be driven by changes in the adaptive immune response and MAPK pathway and could potentially hold predictive information on target treatment response

    The coding and non-coding transcriptional landscape of subependymal giant cell astrocytomas

    Get PDF
    Tuberous sclerosis complex (TSC) is an autosomal dominantly inherited neurocutaneous disorder caused by inactivating mutations in TSC1 or TSC2, key regulators of the mechanistic target of rapamycin complex 1 (mTORC1) pathway. In the CNS, TSC is characterized by cortical tubers, subependymal nodules and subependymal giant cell astrocytomas (SEGAs). SEGAs may lead to impaired circulation of CSF resulting in hydrocephalus and raised intracranial pressure in patients with TSC. Currently, surgical resection and mTORC1 inhibitors are the recommended treatment options for patients with SEGA. In the present study, high-throughput RNA-sequencing (SEGAs n = 19, periventricular control n = 8) was used in combination with computational approaches to unravel the complexity of SEGA development. We identified 9400 mRNAs and 94 microRNAs differentially expressed in SEGAs compared to control tissue. The SEGA transcriptome profile was enriched for the mitogen-activated protein kinase (MAPK) pathway, a major regulator of cell proliferation and survival. Analysis at the protein level confirmed that extracellular signal-regulated kinase (ERK) is activated in SEGAs. Subsequently, the inhibition of ERK independently of mTORC1 blockade decreased efficiently the proliferation of primary patient-derived SEGA cultures. Furthermore, we found that LAMTOR1, LAMTOR2, LAMTOR3, LAMTOR4 and LAMTOR5 were overexpressed at both gene and protein levels in SEGA compared to control tissue. Taken together LAMTOR1-5 can form a complex, known as the 'Ragulator' complex, which is known to activate both mTORC1 and MAPK/ERK pathways. Overall, this study shows that the MAPK/ERK pathway could be used as a target for treatment independent of, or in combination with mTORC1 inhibitors for TSC patients. Moreover, our study provides initial evidence of a possible link between the constitutive activated mTORC1 pathway and a secondary driver pathway of tumour growth

    Prion protein (PrP) deposits in the tectum of experimental Gerstmann-Sträussler-Scheinker disease following intraocular inoculation

    Full text link
    The abnormal misfolded isoform of prion protein (PrPd; "d" for disease) is considered as a surrogate marker for infectivity in the transmissible spongiform encephalopathies (TSEs) or prion diseases, including Creutzfeldt-Jakob disease (CJD). In this experiment, we used intraocular inoculation to study PrPd deposition in the visual system of the brain of mice infected with the Fujisaki (K.Fu) strain of Gerstmann-Sträussler-Scheinker (GSS) disease. We report here that PrPd is deposited in the superior colliculus following contralateral intraocular inoculation and thus follows neuronal connections when it spreads into the brain. Until 26 weeks postinoculation, no PrPd-specific immunostaining was observed in the brain. At 27 weeks postinoculation, PrPd targeted to the contralateral superior colliculus as delicate granular synaptic deposits located in the superficial part of this structure. As already reported, a few spongiform vacuoles were visible in the same area by conventional H and E staining. In several other sections, vacuoles were visible but no PrPd staining could be detected
    corecore