4 research outputs found

    The ephrin-B2/EphB4 system is required in musculoskeletal development and protects the articulation during osteoarthritis: a research highlight

    Get PDF
    Ephrin ligands and their Eph receptors have been implicated in the control of extracellular matrix of some tissues. Although ephrin-B2 and its specific receptor EphB4 were found to be involved in postembryonic control of bone homeostasis, their roles were unclear in musculoskeletal growth and development as well as in osteoarthritis pathology. The role of this ephrin system in musculoskeletal growth and development was delineated in vivo using a cartilage-specific ephrin-B2 knockout mouse model. Its role in osteoarthritis in vivo was explored in mice using a bone-specific overexpression of EphB4 in which osteoarthritis was induced, and in vitro in human osteoarthritic subchondral bone osteoblasts and chondrocytes. In vivo, ephrin-B2 demonstrated to be essential for normal long bone growth and development and its absence in cartilage led to knee and hip osteoarthritis features in aged mice. In vitro data showed that the ephrin-B2-induced EphB4 receptor positively impacted the abnormal metabolism of both osteoarthritic subchondral bone osteoblasts and chondrocytes. The bone?specific EphB4 overexpression in mice validated the in vitro data in that it had beneficial effects not only on the osteoarthritic subchondral bone but also on the cartilage and synovial membrane, and further substantiated the hypothesis that by prophylactically protecting the subchondral bone, the genesis of osteoarthritis could be, at least in part, inhibited. In the context of identifying new candidates targeting osteoarthritis progression, this ephrin system is extremely attractive as a potential novel therapeutic avenue, as therapies having a more global articular approach may prove to be the most successful to arrest or slow the progression of this disease

    The ephrin-B2/EphB4 system is required in musculoskeletal development and protects the articulation during osteoarthritis: a research highlight

    Get PDF
    Ephrin ligands and their Eph receptors have been implicated in the control of extracellular matrix of some tissues. Although ephrin-B2 and its specific receptor EphB4 were found to be involved in postembryonic control of bone homeostasis, their roles were unclear in musculoskeletal growth and development as well as in osteoarthritis pathology. The role of this ephrin system in musculoskeletal growth and development was delineated in vivo using a cartilage-specific ephrin-B2 knockout mouse model. Its role in osteoarthritis in vivo was explored in mice using a bone-specific overexpression of EphB4 in which osteoarthritis was induced, and in vitro in human osteoarthritic subchondral bone osteoblasts and chondrocytes. In vivo, ephrin-B2 demonstrated to be essential for normal long bone growth and development and its absence in cartilage led to knee and hip osteoarthritis features in aged mice. In vitro data showed that the ephrin-B2-induced EphB4 receptor positively impacted the abnormal metabolism of both osteoarthritic subchondral bone osteoblasts and chondrocytes. The bone‑specific EphB4 overexpression in mice validated the in vitro data in that it had beneficial effects not only on the osteoarthritic subchondral bone but also on the cartilage and synovial membrane, and further substantiated the hypothesis that by prophylactically protecting the subchondral bone, the genesis of osteoarthritis could be, at least in part, inhibited. In the context of identifying new candidates targeting osteoarthritis progression, this ephrin system is extremely attractive as a potential novel therapeutic avenue, as therapies having a more global articular approach may prove to be the most successful to arrest or slow the progression of this disease

    Cartilage-specific deletion of ephrin-B2 in mice results in early developmental defects and an osteoarthritis-like phenotype during aging in vivo

    No full text
    Abstract Background Ephrins and their related receptors have been implicated in some developmental events. We have demonstrated that ephrin-B2 (EFNB2) could play a role in knee joint pathology associated with osteoarthritis (OA). Here, we delineate the in vivo role of EFNB2 in musculoskeletal growth, development, and in OA using a cartilage-specific EFNB2 knockout (EFNB2Col2KO) mouse model. Methods EFNB2Col2KO was generated with Col2a1-Cre transgenic mice. The skeletal development was evaluated using macroscopy, immunohistochemistry, histomorphometry, radiology, densitometry, and micro-computed tomography. Analyses were performed at P0 (birth) and on postnatal days P15, P21, and on 8-week- and 1-year-old mice. Results EFNB2Col2KO mice exhibited significant reduction in size, weight, length, and in long bones. At P0, the growth plates of EFNB2Col2KO mice displayed increased type X collagen, disorganized hyphertrophic zone, and decreased mineralization. At P15, mutant mice demonstrated a significant reduction in VEGF and TRAP at the chondro-osseous junction and a delay in the secondary ossification, including a decrease in bone volume and trabecular thickness. At P21 and 8 weeks old, EFNB2Col2KO mice exhibited reduced bone mineral density in the total skeleton, femur and spine. One-year-old EFNB2Col2KO mice demonstrated OA phenotypic features in both the knee and hip. By P15, 27 % of the EFNB2Col2KO mice developed a hip locomotor phenotype, which further experiments demonstrated reflected the neurological midline abnormality involving the corticospinal tract. Conclusion This in vivo study demonstrated, for the first time, that EFNB2 is essential for normal long bone growth and development and its absence leads to a knee and hip OA phenotype in aged mice
    corecore