Ephrin ligands and their Eph receptors have been implicated in the control of extracellular matrix of some tissues. Although ephrin-B2 and its specific receptor EphB4 were found to be involved in postembryonic control of bone homeostasis, their roles were unclear in musculoskeletal growth and development as well as in osteoarthritis pathology. The role of this ephrin system in musculoskeletal growth and development was delineated in vivo using a cartilage-specific ephrin-B2 knockout mouse model. Its role in osteoarthritis in vivo was explored in mice using a bone-specific overexpression of EphB4 in which osteoarthritis was induced, and in vitro in human osteoarthritic subchondral bone osteoblasts and chondrocytes. In vivo, ephrin-B2 demonstrated to be essential for normal long bone growth and development and its absence in cartilage led to knee and hip osteoarthritis features in aged mice. In vitro data showed that the ephrin-B2-induced EphB4 receptor positively impacted the abnormal metabolism of both osteoarthritic subchondral bone osteoblasts and chondrocytes. The bone?specific EphB4 overexpression in mice validated the in vitro data in that it had beneficial effects not only on the osteoarthritic subchondral bone but also on the cartilage and synovial membrane, and further substantiated the hypothesis that by prophylactically protecting the subchondral bone, the genesis of osteoarthritis could be, at least in part, inhibited. In the context of identifying new candidates targeting osteoarthritis progression, this ephrin system is extremely attractive as a potential novel therapeutic avenue, as therapies having a more global articular approach may prove to be the most successful to arrest or slow the progression of this disease