3 research outputs found

    Label-Free Optical Biosensors Based on Aptamer-Functionalized Porous Silicon Scaffolds

    No full text
    A proof-of-concept for a label-free and reagentless optical biosensing platform based on nanostructured porous silicon (PSi) and aptamers is presented in this work. Aptamers are oligonucleotides (single-stranded DNA or RNA) that can bind their targets with high affinity and specificity, making them excellent recognition elements for biosensor design. Here we describe the fabrication and characterization of aptamer-conjugated PSi biosensors, where a previously characterized his-tag binding aptamer (6H7) is used as model system. Exposure of the aptamer-functionalized PSi to the target proteins as well as to complex fluids (i.e., bacteria lysates containing target proteins) results in robust and well-defined changes in the PSi optical interference spectrum, ascribed to specific aptamer-protein binding events occurring within the nanoscale pores, monitored in real time. The biosensors show exceptional stability and can be easily regenerated by a short rinsing step for multiple biosensing analyses. This proof-of-concept study demonstrates the possibility of designing highly stable and specific label-free optical PSi biosensors, employing aptamers as capture probes, holding immense potential for application in detection of a broad range of targets, in a simple yet reliable manner

    Aqueous Synthesis of PEGylated Quantum Dots with Increased Colloidal Stability and Reduced Cytotoxicity

    No full text
    Ligands used on the surface of colloidal nanoparticles (NPs) have a significant impact on physiochemical properties of NPs and their interaction in biological environments. In this study, we report a one-pot aqueous synthesis of 3-mercaptopropionic acid (MPA)-functionalized CdTe/CdS/ZnS quantum dots (Qdots) in the presence of thiol-terminated methoxy polyethylene glycol (mPEG) molecules as a surface coordinating ligand. The resulting mPEGā€“Qdots were characterized by using Ī¶ potential, FTIR, thermogravimetric (TG) analysis, and microscale thermophoresis (MST) studies. We investigated the effect of mPEG molecules and their grafting density on the Qdots photophysical properties, colloidal stability, protein binding affinity, and in vitro cellular toxicity. Moreover, cellular binding features of the resulting Qdots were examined by using three-dimensional (3D) tumor-like spheroids, and the results were discussed in detail. Promisingly, mPEG ligands were found to increase colloidal stability of Qdots, reduce adsorption of proteins to the Qdot surface, and mitigate Qdot-induced side effects to a great extent. Flow cytometry and confocal microscopy studies revealed that PEGylated Qdots exhibited distinctive cellular interactions with respect to their mPEG grafting density. As a result, mPEG molecules demonstrated a minimal effect on the ZnS shell deposition and the Qdot fluorescence efficiency at a low mPEG density, whereas they showed pronounced effect on Qdot colloidal stability, protein binding affinity, cytotoxicity, and nonspecific binding at a higher mPEG grafting amount

    Identification of the Target Binding Site of Ethanolamine-Binding Aptamers and Its Exploitation for Ethanolamine Detection

    No full text
    Aptamers are promising recognition elements for sensitive and specific detection of small molecules. We have previously selected ssDNA aptamers for ethanolamine, one of the smallest aptamer targets so far. The work presented here focuses on the determination of the binding region within the aptamer structure and its exploitation for the development of an aptamer-based assay for detection of ethanolamine. Sequence analysis of the aptamers resulted in the identification of a G-rich consensus sequence, which was able to fold in a typical two- or three-layered G-quartet structure. Experiments with stepwise truncated variants of the aptamers revealed that the consensus sequence is responsible and sufficient for binding to the target. On the basis of the knowledge of the aptamers binding site, we developed an aptamer-based microarray assay relying on competition between ethanolamine and an oligonucleotide complementary to the consensus sequence. Competitive binding of ethanolamine and fluorescently labeled complementary oligonucleotides resulted in fluorescence intensities dependent on ethanolamine concentration with a limit of detection of 10 pM. This method enables detection of small molecules without any labeling of analytes. The competitive assay could potentially be transferred to other aptamers and thus provides a promising system for aptamer-based detection of diverse small molecules
    corecore