49 research outputs found

    Eculizumab treatment for rescue of renal function in IgA nephropathy.

    Get PDF
    Immunoglobulin A (IgA) nephropathy is a chronic glomerulonephritis with excessive glomerular deposition of IgA1, C3 and C5b-9, which may lead to renal failure

    Distinct phenotypes of platelet, monocyte, and neutrophil activation occur during the acute and convalescent phase of COVID-19

    Get PDF
    SARS-CoV-2 has spread rapidly worldwide, causing the COVID-19 pandemic. Platelet activation and platelet-leukocyte complex formation are proposed to contribute to disease progression. Here, we report platelet and leukocyte activation during acute and convalescent COVID-19 in patients recruited between May-July 2020. Blood samples were analyzed by flow cytometry and ELISA using paired comparison between inclusion (day 0) and 28 days later. The majority of patients were mildly or moderately ill with significantly higher cytokine levels (IL-6 and IL-10) on day 0 as compared with day 28. Platelet activation and granule release were significantly higher on day 0 compared with day 28, as determined by ADP- or thrombin-induced surface CD62P expression, baseline released CD62P, and thrombin-induced platelet-monocyte complex formation. Monocyte activation and procoagulant status at baseline and post activation were heterogeneous but generally lower on day 0 compared with day 28. Baseline and thrombin- or fMLF-induced neutrophil activation and procoagulant status were significantly lower on day 0 compared with day 28. We demonstrate that during the acute phase of COVID-19 compared with the convalescent phase, platelets are more responsive while neutrophils are less responsive. COVID-19 is associated with thromboembolic events where platelet activation and interaction with leukocytes may play an important role

    A Novel Mechanism of Bacterial Toxin Transfer within Host Blood Cell-Derived Microvesicles.

    Get PDF
    Shiga toxin (Stx) is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS), associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system

    Fiber Mediated Receptor Masking in Non-Infected Bystander Cells Restricts Adenovirus Cell Killing Effect but Promotes Adenovirus Host Co-Existence

    Get PDF
    The basic concept of conditionally replicating adenoviruses (CRAD) as oncolytic agents is that progenies generated from each round of infection will disperse, infect and kill new cancer cells. However, CRAD has only inhibited, but not eradicated tumor growth in xenograft tumor therapy, and CRAD therapy has had only marginal clinical benefit to cancer patients. Here, we found that CRAD propagation and cancer cell survival co-existed for long periods of time when infection was initiated at low multiplicity of infection (MOI), and cancer cell killing was inefficient and slow compared to the assumed cell killing effect upon infection at high MOI. Excessive production of fiber molecules from initial CRAD infection of only 1 to 2% cancer cells and their release prior to the viral particle itself caused a tropism-specific receptor masking in both infected and non-infected bystander cells. Consequently, the non-infected bystander cells were inefficiently bound and infected by CRAD progenies. Further, fiber overproduction with concomitant restriction of adenovirus spread was observed in xenograft cancer therapy models. Besides the CAR-binding Ad4, Ad5, and Ad37, infection with CD46-binding Ad35 and Ad11 also caused receptor masking. Fiber overproduction and its resulting receptor masking thus play a key role in limiting CRAD functionality, but potentially promote adenovirus and host cell co-existence. These findings also give important clues for understanding mechanisms underlying the natural infection course of various adenoviruses

    Glial Progenitor-Like Phenotype in Low-Grade Glioma and Enhanced CD133-Expression and Neuronal Lineage Differentiation Potential in High-Grade Glioma

    Get PDF
    Background: While neurosphere-as well as xenograft tumor-initiating cells have been identified in gliomas, the resemblance between glioma cells and neural stem/progenitor cells as well as the prognostic value of stem/progenitor cell marker expression in glioma are poorly clarified. Methodology/Principal Findings: Viable glioma cells were characterized for surface marker expression along the glial genesis hierarchy. Six low-grade and 17 high-grade glioma specimens were flow-cytometrically analyzed for markers characteristics of stem cells (CD133); glial progenitors (PDGFR alpha, A2B5, O4, and CD44); and late oligodendrocyte progenitors (O1). In parallel, the expression of glial fibrillary acidic protein (GFAP), synaptophysin and neuron-specific enolase (NSE) was immunohistochemically analyzed in fixed tissue specimens. Irrespective of the grade and morphological diagnosis of gliomas, glioma cells concomitantly expressed PDGFRa, A2B5, O4, CD44 and GFAP. In contrast, O1 was weakly expressed in all low-grade and the majority of high-grade glioma specimens analyzed. Co-expression of neuronal markers was observed in all high-grade, but not low-grade, glioma specimens analyzed. The rare CD133 expressing cells in low-grade glioma specimens typically co-expressed vessel endothelial marker CD31. In contrast, distinct CD133 expression profiles in up to 90% of CD45-negative glioma cells were observed in 12 of the 17 high-grade glioma specimens and the majority of these CD133 expressing cells were CD31 negative. The CD133 expression correlates inversely with length of patient survival. Surprisingly, cytogenetic analysis showed that gliomas contained normal and abnormal cell karyotypes with hitherto indistinguishable phenotype. Conclusions/Significance: This study constitutes an important step towards clarification of lineage commitment and differentiation blockage of glioma cells. Our data suggest that glioma cells may resemble expansion of glial lineage progenitor cells with compromised differentiation capacity downstream of A2B5 and O4 expression. The concurrent expression of neuronal markers demonstrates that high-grade glioma cells are endowed with multi-lineage differentiation potential in vivo. Importantly, enhanced CD133 expression marks a poor prognosis in gliomas

    Challenges in the treatment of malignant glioma with oncolytic adenovirus

    No full text
    Malignant glioma is a tumor that spreads rapidly throughout brain and is almost impossible to remove completely by surgery. It is resistant to chemo- and radiotherapy and the prognosis is very poor. As a result, there is a desperate need for development of novel therapies against this devastating disease. Because of the heterogeneity in this cancer success has been limited, but a recent concept in cancer biology suggests that a small sub-population of cells within the tumor is responsible for initiation and maintenance of the whole tumor, the so-called cancer stem cells (CSC), a fact that could lead to new ways to treat cancer in the future. More specifically, a successful therapy has to target these CSC and in this way inhibit the re-growth of the tumor creating the possibilities for a more effective treatment against cancers such as malignant glioma. However, there is a lot of controversy surrounding this concept and in this thesis I have tried to clarify some of the uncertainties. Thus, since the CSC share many properties with normal neural stem cells (NSC) it could be that such a NCS gone awry is responsible for the CSC and the tumor. As a result, in my thesis, I have tried to look at cell surface markers for any similarities, or variations between the normal NSC and the CSC because this may give us an indication of the type of cells that are prone to transformation. In that case it would be easier to investigate which kind of changes lead to the development of a cancer cell. Additionally, in order to develop a new therapy against malignant glioma based on these possible findings we have chosen to use an adenovirus as a tool. Adenoviral infections are normally not dangerous to healthy individuals, and they are easy to manipulate so this makes them a good choice for cancer therapy. However, there is a common problem in viral treatment of cancer, which is one of the main reasons why treatments fail to give satisfactory results. This problem is the poor spread of the virus when injected into a tumor and I have as part of my work tried to identify mechanisms in order to solve it. Identifying such a mechanism can also answer some questions concerning the general problem in adenoviral biology, namely one of the reasons behind chronic adenoviral infections. We have discovered that during an adenovirus infection viral fiber proteins are secreted from the infected cell, which bind to and masks adjacent cells. Subsequently, because of this masking, as infected cells lyses and newly formed viral particles are released into the extra cellular space they infect new cells at a lower frequency. Identifying the type of cells where transformation takes place, and solving the problem of the poor spread of the virus when injected into a tumor, we hope to contribute to the development of new treatment regimes for malignant glioma in the future

    The Pathogenic Involvement of Neutrophils in Acute Respiratory Distress Syndrome and Transfusion-Related Acute Lung Injury

    No full text
    The acute respiratory distress syndrome (ARDS) is a serious and common complication of multiple medical and surgical interventions, with sepsis, pneumonia, and aspiration of gastric contents being common risk factors. ARDS develops within 1 week of a known clinical insult or presents with new/worsening respiratory symptoms if the clinical insult is unknown. Approximately 40% of the ARDS cases have a fatal outcome. Transfusion-related acute lung injury (TRALI), on the other hand, is characterized by the occurrence of respiratory distress and acute lung injury, which presents within 6 h after administration of a blood transfusion. In contrast to ARDS, acute lung injury in TRALI is not attributable to another risk factor for acute lung injury. 'Possible TRALI', however, may have a clear temporal relationship to an alternative risk factor for acute lung injury. Risk factors for TRALI include chronic alcohol abuse and systemic inflammation. TRALI is the leading cause of transfusionrelated fatalities. There are no specific therapies available for ARDS or TRALI as both have a complex and incompletely understood pathogenesis. Neutrophils (polymorphonuclear leukocytes; PMNs) have been suggested to be key effector cells in the pathogenesis of both syndromes. In the present paper, we summarize the literature with regard to PMN involvement in the pathogenesis of both ARDS and TRALI based on both human data as well as on animal models. The evidence generally supports a strong role for PMNs in both ARDS and TRALI. More research is required to shed light on the pathogenesis of these respiratory syndromes and to more thoroughly establish the nature of the PMN involvement, especially considering the heterogeneous etiologies of ARDS

    Transfusion-associated circulatory overload and transfusion-related acute lung injury.

    No full text
    Transfusion-associated circulatory overload (TACO) and Transfusion-related acute lung injury (TRALI) are syndromes of acute respiratory distress which occur within 6 hours of blood transfusion. TACO and TRALI are the leading causes of transfusion-related fatalities and specific therapies are unavailable. Diagnostically, it remains very challenging to distinguish TACO and TRALI from underlying causes of lung injury and/or fluid overload as well as from each other. TACO is characterized by pulmonary hydrostatic (cardiogenic) edema, while TRALI presents as pulmonary permeability edema (noncardiogenic). The pathophysiology of both syndromes is complex and incompletely understood. A 2-hit model is generally assumed to underlie TACO and TRALI disease pathology where the first hit represents the clinical condition of the patient and the second hit is conveyed by the transfusion product. In TACO, cardiac- or renal impairment and positive fluid balance appear first hits while suboptimal fluid management or other components in the transfused product may enable the second hit. Remarkably, other factors beyond volume play a role in TACO. In TRALI, the first hit can, for example, be represented by inflammation while the second hit is assumed to be caused by anti-leukocyte antibodies or biological response modifiers (e.g. lipids). In this review, we provide an up-to-date overview of TACO and TRALI regarding clinical definitions, diagnostic strategies, pathophysiological mechanisms and potential therapies. More research is required to better understand the TACO and TRALI pathophysiology and more biomarker studies are warranted. Collectively, this may result in improved diagnostics and development of therapeutic approaches for these life-threating transfusion reactions
    corecore